
U.S. Department
of Commerce

National Bureau
of Standards

Computer Science
and Technology

5^
NBS Special Publication 500-75

Validation, Verification,

and Testing of

Computer Software

i MEW BOOK mif

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act ot Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scienfific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government

agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities' — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

^Some divisions within the center are located at Boulder, CO 80303.

Computer Science
and Technology

NBS Special Publication 500-75

Validation, Verification,

and Testing of

Connputer Software

W. Richards Adrion

Martha A. Branstad

John C. Cherniavsky

Center for Programming Science and Technology

Institute for Computer Sciences and Technology

National Bureau of Standards

Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE
Philip M. Klutznick, Secretary

Jordan J. Baruch, Assistant Secretary for Productivity,

Technology and Innovation

National Bureau of Standards

Ernest Ambler, Director

Issued February 1 981

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research and

development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-75
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-75, 62 pages (Feb. 1981)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 80-600199

U.S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1980

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington. D.C. 20402

Price $3.75

(Add 25 percent for other than U.S. mailing)

TABLE OF CONTENTS

Page

Chapter 1: Quality Assurance Through Verification 2

1.1 Attributes of Quality Software 2

1.2 Verification Throughout the Lifecycle 6

REQUIREMENTS 8
DESIGN 8
CONSTRUCTION 9

MAINTENANCE 10

Chapter 2 An Overview of Testing 11

2.1 Concepts 11

2.2 Dynamic Testing 12

2.3 Structural vs Functional Testing 13

2.4 Static Testing 14

2.5 Manual vs Automated Testing 14

Chapter 3 Verification Techniques 16

3.1 General Verification Techniques 16

DESK CHECKING AND PEER REVIEW 16
WALKTHROUGHS, INSPECTIONS, AND REVIEWS 17

PROOF OF CORRECTNESS TECHNIQUES 19

SIMULATION 20

3.2 Test Data Generation 22

3.3 Functional Testing Techniques 23

BOUNDARY VALUE ANALYSIS 23
ERROR GUESSING AND SPECIAL VALUE ANALYSIS 24
CAUSE EFFECT GRAPHING 25

DESIGN BASED FUNCTIONAL TESTING 25

3.4 Structural Testing Techniques 26

COVERAGE-BASED TESTING 26
COMPLEXITY-BASED TESTING 28

-iii-

3.5 Test Data Analysis 30

STATISTICAL ANALYSES AND ERROR SEEDING 30
MUTATION ANALYSIS 32

3.6 Static Analysis Techniques 32

FLOW ANALYSIS 33
SYMBOLIC EXECUTION 35

3.7 Dynamic Analysis Techniques 36

3.8 Combined Methods 39

3 . 9 Test Support Tool s 39

TEST DOCUMENTATION 40
TEST DRIVERS 40
AUTOMATIC TEST SYSTEMS AND TEST LANGUAGES 41

Chapter 4 Summary 43

GLOSSARY 46

REFERENCES 51

-iv-

VALIDATION, VERIFICATION, AND TESTING OF COMPUTER SOFTWARE

W. Richards Adrion
Martha A. Branstad

John C. Cherniavsky

Programming is an exercise in problem solv-
ing. As with any problem solving activity, deter-
mination of the validity of the solution is part
of the process. This survey discusses testing and
analysis techniques that can be used to validate
software and to instill confidence in the program-
ming product. Verification throughout the
development process is stressed. Specific tools
and techniques are described.

Key words: Validation; software verification;
software testing; test data generation; test
coverage; automated software tools; software
1 ifecycl e

.

-1-

Chapter 1: Quality Assurance Through Verification

The National Bureau of Standards (NBS) has a mission under
Public Law 89-306 (Brooks Act) to develop standards to enable
the "economic and efficient purchase, lease, maintenance,
operation, and utilization of automatic data processing equipment
by Federal Departments and agencies." As part of its current
standards initiative, NBS is studying methods to ensure the
quality of software procured by the 'Government and software
developed within the Government.

Testing is the traditional technique used to determine and
assure the quality of products. For many items procured by the
Government, the definition or description of a quality product
and the testing methods used to ensure that quality are well
established. These tests are usually physical tests based on both
industry and Government standards (such as dimensions for
fittings, strength for materials, power for motors, etc.). The
success of these methods depends upon the definition of what
constitutes a quality product, the determination of measurable
properties that reflect the quality, the derivation of meaningful
test criteria based on the measurable quantities, and the
formulation of adequate tests to ensure the quality.

Unfortunately, software does not fit into the traditional
framework of quality assessment. One reason is that software, in
general, is a "one of a kind" product especially tailored for a

particular application. There is often no standard product or
specification to use as a model to measure against. Secondly,
analogies to physical products with applicable dimensional,
strength, etc. standards do not exist. Of greatest importance,
the concept of what constitutes quality in software is not as
well formulated. There is no universally accepted definition of
software quality.

1.1 Attributes of Quality Software

There have been many studies directed toward the
determination of appropriate factors for software quality
[BOEH78], [MCCA77], [JONE76]. A number of attributes have been
proposed; the set given by Figure 1.1 is representative. Most
of these factors are qualitative rather than quantitative.

In Figure 1.1, the top level characteristics of quality
software are reliability, testability, usability, efficiency,
transportability, and maintainability. In practice, efficiency
often turns out to be in conflict with other attributes, e.g.
transportability, maintainability, and testability. As hardware
costs decrease, efficiency of machine use becomes much less an

-2-

issue and consequently a less important attribute of software
quality. At present, a reasonable software development
methodology will support the creation of software with all these
qualities. While a piece of code may not be locally as efficient
as a skilled programmer can write it disregarding all other
factors, it must be designed to be as efficient as possible while
still exhibiting the other desired qualities.

For the purpose of this document, two qualities stand out,
reliability and testability. The others are equally important,
but less related to testing and verification issues, and perhaps
more qualitative than quantitative. Reliable software must be
adequate, that is, it must be correct, complete, consistent, and
feasible at each stage of the development lifecycle. An
infeasible set of requirements will lead to an inadequate design
and probably an incorrect implementation. Given that the software
meets these adequacy requirements at each stage of the
developnent process, to be reliable it must also be robust.
Robustness is a quality which represents the ability of the
software to survive a hostile environment. We cannot anticipate
all possible events [ADRI80], and we must build our software to
be as resilient as possible.

At all stages of the lifecycle, software should be testable.
To accomplish this it must be understandable. The desired product
(the requirements and design) and the actual product (the code)
should be represented in a structured, concise, and self-
descriptive manner so that they can be compared. The software
must also be measurable, allowing means for actually
instrumenting or inserting probes, testing,, and evaluating the
product of each stage.

Etnphasis on particular quality factors will vary from
project to project depending on application, environment, and
other considerations. The specific definition of quality and the
importance of given attributes should be specified during the
requirements phase of the project.

-3-

Qual ity Software

rel iabl e I

I

adequate I

I

correct
compl ete
consistent
feasible

robust

testabl e I

I

understandable I

I

St ructured
concise
sel f-descriptive

measurabl e I

I

accessibl

e

communicative
quantif iabl

e

usabl

e

efficient

transportabl

e

maintainabl

e

Figure 1.1 A Hierarchy of Software Quality Attributes

Even if good quality is difficult to define and measure,
poor quality is glaringly apparent. Software that is error prone
or does not work is obviously poor quality software.
Consequently, discovery of errors in the software has been the
first step toward quality assurance. Program testing, executing
the software using representative data samples and comparing the
actual results with the expected results, has been the
fundamental technique used to determine errors. However, testing
is difficult, time consuming, and inadequate. Consequently,
increased emphasis has been placed upon insuring quality through
the development process.

-4-

The critical ity of the problem determines the effort
required to validate the solution. Software to control airplane
landings or to direct substantial money transfers requires higher
confidence in its proper functioning than does a carpool locator
program since the consequences of malfunction are more severe.
For each software project not only the product requirements but
also the validation requirements should be determined and
specified at the initiation of the project. Project size,
uniqueness, critical ity, the cost of malfunction, and project
budget all influence the validation needs. With the validation
requirements clearly stated, specific techniques for verification
and testing can be chosen. This document surveys the field of
verification and testing techniques. The emphasis is upon medium
and large size projects but many of the individual techniques
have broader applicability. Verification and testing for very
small projects are discussed in [BRAN80].

Although a glossary is included as an appendix to this
document, the following terms are sufficiently important to
warrant definition in the text. It should be noted that some of
these terms may appear with slightly different meanings elsewhere
in the literature.

1. VALIDATION: determination of the correctness of the
final program or software produced from a develop-
ment project with respect to the user needs and re-
quirements. Validation is usually accomplished by
verifying each stage of the software development 1 i-

fecycle.

2. CERTIFICATION: acceptance of software by an author-
ized agent usually after the software has been vali-
dated by the agent, or after its validity has been
demonstrated to the agent.

3. VERIFICATION: in general the demonstration of con-
sistency, completeness, and correctness of the
software at each stage and between each stage of the
development lifecycle.

4. TESTING: examination of the behavior of a program by
executing the program on sample data sets.

5. PROOF OF CORRECTNESS: use of techniques of logic to
infer that an assertion assumed true at program en-
try implies that an assertion holds at program exit.

6. PROGRAM DEBUGGING: the process of correcting
syntactic and logical errors detected during coding.
With the primary goal of obtaining an executing
piece of code, debugging shares with testing certain
techniques and strategies, but differs in its usual

-5-

ad hoc application and local scope.

1.2 Verification Throughout the Lifecycle

Figure 1.2 presents a traditional view of the development
life cycle with testing contained in a stage immediately prior to
operation and maintenance. All too often testing is the only
verification technique used to determine the adequacy of the
software. When verification is constrained to a single technique
and confined to the latter stages of development, severe
consequences can result. It is not unusual to hear of testing
consuming 50% of the development budget. All errors are costly
but the later in the lifecycle that the error discovery is made,
the more costly the error [INF079]. Consequently, if lower
cost and higher quality are the goal, verification should not
be isolated to a single stage in the development process but
should be incorporated into each phase of development. Barry
Boehm [BOEH77] has stated that one of the most prevalent
and costly mistakes made on software projects today is to defer
the activity of detecting and correcting software problems until
late in the project. The primary reason for early
investment in verification activity is that expensive errors
may already have been made before coding begins.

: REQUIRE- : DES I GN : CODE : INTEGRATE: TEST : OPERATION & :

: MENTS : MAINTENANCE :

Figure 1.2 The Software Development Life Cycle

Figure 1.3 presents an amended life cycle chart which
includes verification activities. The success of phasing
verification throughout the development cycle depends upon the
existence of a clearly defined and stated product at each
developnent stage. The more formal and precise the statement of
the developnent product, the more amenable it is to the analysis
required to support verification. Many of the new software
developnent methodologies encourage a firm product from the early
developnent stages.

I

-6-

Life Cycle Stage Verification Activities

Requirements ;

Determine Verification Approach
• Determine Adequacy of Requirements
'Generate Functional Test Data

Design

Determine Consistency of Design with
Requirements

; Determine Adequacy of Design
'Generate Structural and Functional

Test Data

Construction
: Determine Consistency with Design
: Determine Adequacy of Implementation
: 'Generate Structural and Functional
: Test Data
: Apply Test Data

Operation
& Maintenance

: Retest

Figure 1.3 Life Cycle Verification Activities

We will examine each stage of the lifecycle and discuss the
relevant activities. The following activities should be
performed at each otage:

1. Analyze the structures produced at this stage for
internal testability and adequacy.

2. Generate test sets based on the structures at this stage.

In addition, the following should be performed during design and
construction

:

3. Determine that the structures are consistent with
structures produced during previous stages.

4. Refine or redefine test sets generated earlier.

-7-

Throughout the entire life cycle/ neither devel opanent nor
verification is a straightline activity. Modifications or
corrections to structures at one stage will require modifications
and rever ification of structures produced during previous stages.

REQUIREMENTS.
The verification activities that accompany the problem

definition and requirements analysis stage of software
development are extremely significant. The adequacy of the
requirements must be thoroughly analyzed and initial test cases
generated with the expected (correct) responses. Developing
scenarios of expected system use may help to determine the test
data and anticipated results. These tests will form the core of
the final test set. Generating these tests and the expected
behavior of the system clarifies the requirements and helps
guarantee that they are testable. Vague or untestable
requirements will leave the validity of the delivered product in
doubt. Late discovery of requirements inadequacy can be very
costly. A determination of the critical ity of software quality
attributes and the importance of validation should be made at
this stage. Both product requirements and validation
requirements should be established.

Some automated tools to aid in the requirements definition
exist. Examples include Information System Design and
Optimization System (ISDOS) [TEIC77], The Software Requirements
Engineering Program (SREP) [ALF077], Structured Analysis and
Design Technique (SADT) [ROSS77], and Systematic Activity
Modeling Method (SAMM) [LiAMB78]. All provide a disciplined frame
work for expressing requirements and thus aid in the checking of
consistency and completeness. Although these tools provide only
rudimentary validation procedures, this capability is greatly
needed and it is the subject of current research [TEIC78].

DESIGN.
Organization of the verification effort and test management

activities should be closely integrated with preliminary design.
The general testing strategy, including test methods and test
evaluation criteria, is formulated; and a test plan is produced.
If the project size or critical ity warrants, an independent test
team is organized. In addition, a test schedule with observable
milestones is constructed. At this same time, the framework for
quality assurance and test documentation should be established,
such as [FIPS76], [BUCK79], or [IEEE79].

During detailed design, validation support tools should be
acquired or developed and the test procedures themselves should
be produced. Test data to exercise the functions introduced
during the design process as well as test cases based upon the
structure of the system should be generated. Thus as the
software development proceeds, a more effective set of test cases
is built up.

-8-

In addition to test organization and the generation of test
cases to be used during construction, the design itself should be
analyzed and examined for errors. Simulation can be used to
verify properties of the system structures and subsystem
interaction, design wal k-throughs should be used by the
developers to verify the flow and logical structure of the system
while design inspection should be performed by the test team.
Missing cases, faulty logic, module interface mismatches, data
structure inconsistencies, erroneous l/o assumptions, and user
interface inadequacies are items of concern. The detailed design
must be shown internally consistent, complete, and consistent
with the preliminary design and requirements.

Although much of the verification must be performed
manually, the use of a formal design language can facilitate the
analysis. Several different design methodologies are in current
use. Top Down Design proposed by Harlan Mills of IBM [MILL70],
Structured Design introduced by L. Constantine [YOUR79], and the
Jackson Method [JACK75] are examples. These techniques are
manual and facilitate verification by providing a clear statement
of the design. The Design Expression and Configuration Aid
(DECA) [CARP75], the Process Design Language [CAIN75], High Order
Software [HAMI76], and SPECIAL [ROUB76] are examples of automated
systems or languages which can also be used for analysis and
consistency checking.

CONSTRUCTION.
Actual testing occurs during the construction stage of

development. Many testing tools and techniques exist for this
stage of system development. Code walk-through and code
inspection are effective manual techniques. Static analysis
techniques detect errors by analyzing program characteristics
such as data flow and language construct usage. For programs of
significant size, automated tools are required to perform this
analysis. Dynamic analysis, performed as the code actually
executes, is used to determine test coverage through various
instrumentation techniques. Formal verification or proof
techniques are used to provide further quality assurance. These
techniques are discussed in detail in Chapter 3.

During the entire test process, careful control and
management of test information is critical. Test sets, test
results, and test reports should be catalogued- and stored in a
data base. For all but very small systems, automated tools are
required to do an adequate job, for the bookkeeping chores alone
become too large to be handled manually. A test driver, test
data generation aids, test coverage tools, test results
management aids, and report generators are usually required.

-9-

MAINTENANCE.
Over 50% of the life cycle costs of a software system are

spent on maintenance. As the system is used, it is modified
either to correct errors or to augment the original system. After
each modification the system must be retested . Such retesting
activity is termed regression testing. The goal of regression
testing is to minimize the cost of system revalidation. Usually
only those portions of the system impacted by the modifications
are retested. However, changes at any level may necessitate
retesting, reverifying and updating documentation at all levels
below it. For example, a design change requires design
reverification , unit retesting and subsystem and system
retesting. Test cases generated during system developanent are
reused or used after appropriate modifications. The quality of
the test documentation generated during system developnent and
modified during maintenance will affect the cost of regression
testing. If test data cases have been catalogued and preserved,
duplication of effort will be minimized.

We will emphasize testing, verification, and validation
during software development. The maintenance and operation stage
is very important, but generally outside the scope of this
report. The procedures described here for software development
will, if followed correctly, make the task of maintaining,
upgrading, evolving, and operating the software a much easier
task .

-10-

Chapter 2 An Overview of Testing

2.1 Concepts

The purpose of this section is to discuss the basic concepts
and fundamental implications and limitations of testing as a part
of software verification. There are many meanings attributed to
the verb "to test" throughout the technical literature. Let us
begin by looking at the Oxford English Dictionary definition:

Test - That by which the existence, quality, or genuineness
of anything is, or may be, determined.

The objects that we test are the elements that arise during the
developnent of software. These include modules of code,
requirements and design specifications, data structures, and any
other objects that are necessary for the correct development and
implementation of our software. We will often use the term
"program" in this document to refer to any object that may be
conceptually or actually executed. A design or requirements
specification can be conceptually executed, transforming input
data to output data. Hence, remarks directed towards "programs"
have broader application.

We view a program as a representation of a function. The
function describes the relationship of an input (called a domain
element) to an output (called a range el ement) . The testing
process is then used to ensure that the program faithfully
realizes the function. For example, consider the function 1/x.
Its domain is the set of all floating point numbers excluding 0.
Any program that realizes the function 1/x must, when given a

floating point value r (r nonzero), return the value 1/r (given
the machine dependent precision). The testing problem is to
ensure that the program does represent the function.

Elements of the function's domain are called val id inputs .

Since programs are expected to operate reasonably on elements
outside of a function's domain (called "robustness"), we must
test the program on such elements. Thus any program that
represents 1/x should be tested on the value 0 and perhaps also
on meaningless data (such as strings) to ensure that the program
does not fail catastrophical ly . These elements outside of the
function's domain are called inval id inputs . How to choose these
and other test input values is discussed in detail in 3.3.

The essential components of a program test are a description
of the functional domain, the program in executable form, a

description of the expected behavior, a way of observing program
behavior, and a method of determining whether the observed

-11-

behavior conforms with the expected behavior. The testing
process consists of obtaining a valid value from the functional
domain (or an invalid value from outside the functional domain to
test for robustness) , determining the expected behavior,
executing the program and observing its behavior, and finally
comparing that behavior with the expected behavior. If the
expected and the actual behavior agree we say the test instance
succeeds, otherwise we say the test instance fails.

Of the five necessary components in the testing process, the
most difficult to obtain is a description of the expected
behavior. Often ad hoc methods must be used to determine expected
behavior. These methods include hand calculation, simulation, and
other less efficient solutions to the same problem. What is
needed is an oracl

e

, a source which for any given input
description can provide a complete description of the
corresponding output behavior. We will discuss this process
throughout Chapter 3.

2.2 Dynamic Testing

We can classify program test methods into dynamic and static
anal ysis techniques. Dynamic analysis requires that the program
be executed and, hence, involves the traditional notion of
program testing, i.e. the program is run on some test cases and
the results of the program's performance are examined to check
whether the program operated as expected. Static analysis does
not usually involve actual program execution. Common static
analysis techniques include such compiler tasks as syntax and
type checking. We will first consider some general aspects of
dynamic analysis within a general discussion of program testing.

A complete verification of a program, at any stage in the
life cycle, can be obtained by performing the test process for
every element of the domain. If each instance succeeds, the
program is verified, otherwise an error has been found. This
testing method is known as exhaustive testing and is the only
dynamic analysis technique that will guarantee the validity of a
program. Unfortunately, this technique is not practical.
Frequently functional domains are infinite, or if not infinite
very large, so as to make the number of required test instances
infeasible.

The solution is to reduce this potentially infinite
exhaustive testing process to a finite testing process. This is
accomplished by finding criteria for choosing representative
elements from the functional domain. These criteria may reflect
either the functional description or the program structure.

The subset of elements used in a testing process is called a
test data set (test set for short). Thus the crux of the testing

-12-

problem is to find an adequate test set, one that "covers" the
domain and is small enough to perform the testing process for
each element in the set. The paper of Goodenough and Gerhart
[GOOD75] presents the first formal treatment for determining when
a criterion for test set selection is adequate. In their paper,
a criterion C is said to be consistent provided that test sets Tl
and T2 chosen by C are such that all test instances of Tl are
successful exactly when all test instances of T2 are successful.
A criterion C is said to be compl ete provided that it produces
test sets that uncover all errors. These definitions lead to the
fundamental theorem of testing which states:

If there exists a consistent,
set selection for a program
the criterion is such that all
the program P is correct.

complete criterion for test
P and if a test set satisfying
test instances succeed, then

Unfortunately, it has been shown to be impossible to find
consistent, complete test criteria except for the simplest cases
[HOWD76]. The above just confirms that testing, especially
complete testing, is a very difficult process. Examples of
criteria that are used in practice for the selection of test sets
incl ude

;

1. The elements of the test set reflect special domain
properties such as extremal or ordering properties.

2. The elements of the test set exercise the program structure
such as test instances insuring all branches or all statements
are executed.

3. The elements of the test set reflect special properties of
the functional description such as domain values leading to

extremal function values.

2.3 Structural vs Functional Testing

The properties that the test set is to reflect are

classified according to v^ether they are derived from a

description of the program's function or from the program's

internal structure. Test data generation based on functional

analysis and on structural analysis is described in 3 . 3 and 3.4.

Classifying the test data inclusion criteria given above, the

first and the third are based on functional analysis criteria

while the second is based on structural analysis criteria. Both

structural and functional analysis should be performed to insure

adequate testing. Structural analysis-based test sets tend to

uncover errors that occur during "coding" of the program, while

functional analysis-based test sets tend to uncover errors that

occur in implementing requirements or design specifications.

-13-

Although the criterion for generating a structure-based test
set is normally simple, the discovery of domain elements that
satisfy the criterion is often quite difficult. Test data are
usually derived by iteratively refining the data based on the
information provided by the application of structural coverage
metrics. Since functional analysis techniques often suffer from
combinatorial problems, the generation of adequate functional
test data is no easier. As a result, ad hoc methods are often
employed to locate data which stress the program.

2.4 Static Testing

The application of test data and the analysis of the results
are dynamic testing techniques. The class of static analysis
techniques is divided into two types: techniques that analyze
consistency and techniques that measure some program property.
The consistency techniques are used to insure program properties
such as correct syntax, correct parameter matching between
procedures, correct typing, and correct requirements and
specification translation. The measurement techniques measure
properties such as error proneness, under standabil ity, and
wel 1-structuredness

.

The simplest of the consistency checking static analysis
techniques is the syntax checking feature of compilers. In modern
compilers, this feature is frequently augmented by type checking,
parameter matching (for modules), cross reference tables, static
array bounds checking, and aliasing. Two advanced static
analysis techniques are symbolic execution and program proving.
The latter proves the consistency of stated relations between
program variables before and after program segments. Symbolic
execution performs a "virtual" execution of all possible program
paths. Since an actual execution does not occur, the method is
considered a static analysis technique. Both are described in
detail in Chapter 3.

2.5 Manual vs Automated Testing

A final classification of methods can be made upon the basis
of whether the method is a manual method such as structured
walkthrough or code inspection, or whether the method is
automated.

In Table 2 . 1 we list the verification methods that will be
discussed throughout the rest of the paper. We provide a

classification according to v^ether the method is dynamic or
static, structural or functional, manual or automated. We also
provide a reference to where the method is discussed in the body
of the report.

-14-

TABLE 2.1 A SUMMARY OF TESTING TECHNIQUES

Technique Section
Manual

/

Automatic
Static/
Dynamic

Structural

/

Functional

Correctness proof
I 3 . 1 1 both 1 static 1 both

1

Walkthroughs
I 3 . 1 1 manual

1
dynamic 1 both

1

Inspections
I 3 . 1 1 manual 1 static 1 both

1

Design reviews and
I

audits
1

3 . 1 1 manual 1 static 1 both
1

Simulation
I 3 . 1 1 automated

1
dynamic 1 functional

Desk checking I 3 . 1 1 manual 1 both 1 structural

Peer review
1 3 . 1 1 manual 1 both 1 structural

Executable specs. 1 3 . 2 1 automated 1
dynamic 1 functional

Exhaustive Testing I 3 . 3 1 automated 1
dynamic 1 functional

Stress testing 1 3 . 3 1 manual 1
dynamic 1 functional

Error guessing 1 3 . 3 1 manual i
dynamic 1 functional

Cause effect graphing I 3 . 3 1 both 1
dynamic 1 functional

Design based 1

1 functional testing 1

3 . 3 I
manual 1

dynamic 1 functional

1
Coverage based 1

1 metric testing 1

3 . 4 1 automated 1 both 1 structural

1
Complexity based 1

1 metric testing 1

3 . 4 1 automated 1 both 1 structural

1 Compiler based 1

1 analysis 1

3 6 1 automated 1 static 1 structural

1 Data flow analysis 1 3 . 6 1 automated 1 static 1 structural

1 Control flow analysis I 3 .6 1 automated 1 static 1
structural

1 Symbolic execution 1 3 . 6 1 automated 1 static 1
structural

1 Instrumentation 1 3 . 7 1 automated 1
dynamic 1 structural

1 Combined techniques 1 3 . 8 1 automated 1 both 1 both

-15-

Chapter 3 Verification Techniques

A description of verification, validation, and testing
techniques can be arranged in several different ways. In keeping
with the emphasis on verification throughout the lifecycle, we
first present general techniques which span the stages of the
lifecycle. The remaining sections are organized along the lines
of the usual testing plan, providing discussion of test data
generation, test data evaluation, testing procedures and
analysis, and the developnent of support tools. Each procedure
will be briefly discussed, with emphasis given to its role in the
validation process and its advantages and limitations.

3.1 General Verification Techniques

Techniques that can be used throughout the lifecycle are
described here. The majority of the techniques involve static
analysis and can be performed manually. They can be utilized
without a large capital expenditure, although for analysis of
large systems automated aids are advised. These include
traditional informal methods of desk checking and review,
disciplined techniques of structured walkthroughs and
inspections, and formal methods of proof of correctness. In
addition, the role simulation plays in validation and
verification is described.

DESK CHECKING AND PEER REVIEW.
Desk checking is the most traditional means for analyzing a

program. It is the foundation for the more disciplined
techniques of walkthroughs, inspections and reviews. In order to
improve the effectiveness of desk checking, it is important that
the programmer thoroughly review the problem definition and
requirements, the design specification, the algorithms and the
code listings. In most instances, desk checking is used more as
a debugging technique than a testing technique. Since seeing
one's own errors is difficult, it is better if another person
does the desk checking. For example, two programmers can trade
listings and read each others code. This approach still lacks
the group dynamics present in formal walkthroughs, inspections,
and reviews

.

Another method, not directly involving testing, which tends
to increase overall quality of software production is peer
review. There are a variety of implementations of peer review
[MYER79], but all are based on a review of each programmer's
code. A panel can be set up which reviews sample code on a
regular basis for efficiency, style, adherence to standards, etc.
and which provides feedback to the individual programmer. Another

-16-

possibility is to maintain a notebook of required "fixes" and
revisions to the software and indicate the original programmer or
designer. In a "chief programmer team" [BAKE72] environment, the
librarian can collect data on programmer runs, error reports,
etc. and act as a review board or pass the information on to a

peer review panel

.

WALKTHROUGHS, INSPECTIONS, AND REVIEWS.
Walkthroughs and inspections are formal manual techniques

which are a natural evolution of desk checking. While both
techniques share a common philosophy and similar organization,
they are quite distinct in execution. Furthermore, while they
both evolved from the simple desk check discipline of the single
programmer, they use very disciplined procedures aimed at
removing the major responsibility for verification from the
developer

.

Both procedures require a team, usually directed by a
moderator. The team includes the developer, but the remaining
3-6 members and the moderator should not be directly involved in

the development effort. Both techniques are based on a reading of
the product (e.g. requirements, specifications, or code) in a

formal meeting environment with specific rules for evaluation.
The difference between inspection and walkthrough lies in the
conduct of the meeting. Both methods require preparation and
study by the team members, and scheduling and coordination by the
team moderator.

Inspection involves a step-by-step reading of the product,
with each step checked against a predetermined list of criteria.
These criteria include checks for historically common errors.
'Guidance for developing the test criteria can be found in

[MYER79], [FA'GA76] and [WEIN71]. The developer is usually
required to narrate the reading of the product. Many errors are
found by the developer just by the simple act of reading aloud.

Others, of course, are determined as a result of the discussion
with team members and by applying the test criteria.

Walkthroughs differ from inspections in that the programmer
does not narrate a reading of the product by the team, but
provides test data and leads the team through a manual simulation

of the system. The test data are walked through the system, with
intermediate results kept on a blackboard or paper. The test

data should be kept simple given the constraints of human

simulation. The purpose of the walkthrough is to encourage
discussion, not just to complete the system simulation on the
test data. Most errors are discovered through questioning the

developer's decisions at various stages, rather than through the

application of the test data.

At the problem definition stage, walkthrough and inspection
can be used to determine if the requirements satisfy the

-17-

testability and adequacy measures as applicable to this stage in
the development. If formal requirements are developed, formal
methods, such as correctness techniques, may be applied to insure
adherence with the quality factors.

Walkthroughs and inspections should again be performed at
the preliminary and detailed design stages. Design walkthroughs
and inspections will be performed for each module and module
interface. Adequacy and testability of the module interfaces are
very important. Any changes which result from these analyses
will cause at least a partial repetition of the verification at
both stages and between the stages. A reexamination of the
problem definition and requirements may also be required.

Finally, the walkthrough and inspection procedures should be
performed on the code produced during the construction stage.
Each module should be analyzed separately and as integrated parts
of the finished software.

Design reviews and audits are commonly performed as stages
in software development. The Department of Defense has developed
a standard audit and review procedure [MILS763 based on hardware
procurement regulations. The process is representative of the
use of formal reviews and includes:

1. System Requirements Review is an examination of the
initial progress during the problem definition stage and of
the convergence on a complete system configuration. Test
planning and test documentation are begun at this review.

2. System Design Review occurs when the system definition
has reached a point where major system modules can be
identified and completely specified along with the
corresponding test requirements. The requirements for each
major subsystem are examined along with the preliminary test
plans. Tools required for verification support are
identified and specified at this stage.

3. The Prel iminary Design Review is a formal technical
review of the basic design approach for each major subsystem
or module. The revised requirements and preliminary design
specifications for each major subsystem and all test plans,
procedures and documentation are reviewed at this stage.
Developnent and verification tools are further identified at
this stage. Changes in requirements will lead to an
examination of the test requirements to maintain
consistency

.

4. The Critical Design Review occurs just prior to the
beginning of the construction stage. The complete and
detailed design specifications for each module and all draft
test plans and documentation are examined. Again

-18-

consistency with previous stages is reviewed, with
particular attention given to determining if test plans and
documentation reflect changes in the design specifications
at all levels.

5. Two audits, the Functional Configuration Audit and the
Physical Configuration Audit are performed. The former
determines if the subsystem performance meets the
requirements. The latter audit is an examination of the
actual code. In both audits, detailed attention is given to
the documentation, manuals and other supporting material.

6. A Formal Qual ification Review is performed to determine
through testing that the final coded subsystem conforms with
the final system specifications and requirements. It is
essentially the subsystem acceptance test.

PROOF OF CORRECTNESS TECHNIQUES.
Proof techniques as methods of validation have been used

since von Neumann's time. These techniques usually consist of
validating the consistency of an output "assertion"
(specification) with respect to a program (or requirements or
design specification) and an input assertion (specification).
In the case of programs, the assertions are statements about the
program's variables. The program is "proved" if whenever the
input assertion is true for particular values of variables and
the program executes, then it can be shown that the output
assertion is true for the possibly changed values of the
program's variables. The issue of termination is normally
treated separately.

There are two approaches to proof of correctness: formal
proof and informal proof. A formal proof consists of developing
a mathematical logic consisting of axioms and inference rules and
defining a proof to be either a proof tree in the natural
deduction style [GENT35] or to be a finite sequence of axioms and

inference rules in the Hilbert-Ackermann style [CHUR56]. The
statement to be proved is at the root of the proof tree or is the
last object in the proof sequence. Since the formal proof logic
must also "talk about" the domain of the program and the
operators that occur in the program, a second mathematical logic
must be employed. This second mathematical logic is usually not
decidabl e

.

Most recent research in applying proof techniques to

verification has concentrated on programs. The techniques apply,
however, equally well to any level of the development lifecycle
where a formal representation or description exists. The GYPSY
[AMBL78] and HDM [ROBI79] methodologies use proof
techniques throughout the development stages. HDM, for

example, has as a goal the formal proof of each level of

development. 'Good summaries of program proving and

-19-

correctness research are in [MANN74] and [ELSP72].

Heuristics for proving programs fojrmally are essential but
are not yet well enough developed to allow the formal
verification of a large class of programs. In lieu of applying
heuristics to the program, some approaches to verification
require that the programmer provide information, interactively,
to the verification system in order that the proof be completed.
Examples include Gerhart's AFFIRM [GERH80] and Constable's
PL/CV [CONS78]. Such information may include facts about the
program' s domain and operators or facts about the program'

s

intended function.

A typical example of a program and its assertions is given
below. The input assertion states that the program' s inputs are
respectively a non-negative integer and a positive integer. The
output assertion states that the result of the computation is the
smallest non-negative remainder of the division of the first
input by the second. This example is due to Dijkstra and appears
in [DIJK72].

Input Assertion {a >= 0 and d > 0 and integer(a) and integer(b)}

Program integer r,dd;
r : = a ; dd : =d

;

while dd<=r do dd:=2*dd;
while dd~=d do

begin dd:=dd/2;
if dd<=r do r:=r-dd

end

Output Assertion {0 <= r < d and a congruent to r modulo d}

Informal proof techniques follow the logical reasoning
behind the formal proof techniques but without the formal logical
system. Often the less formal techniques are more palatable to
the programmers. The complexity of informal proof ranges from
simple checks such as array bounds not being exceeded, to complex
logic chains showing non-interference of processes accessing
common data. Informal proof techniques are always used
implicitly by programmers. To make them explicit is similar to
imposing disciplines, such as structured walkthrough, on the
programmer

.

SIMULATION.
Simulation is most often employed in real-time systems

developnent where the "real world" interface is critical and
integration with the system hardware is central to the total
design. There are, however, many nonreal-time applications in

which simulation is a cost effective verification and test data
generation technique

.

-20-

To use simulation as a verification tool several models must
be developed. Verification is performed by determining if the
model of the software behaves as expected on models of the
computational and external environments using simulation. This
technique also is a powerful way of deriving test data. Inputs
are applied to the simulated model and the results recorded for
later application to the actual code. This provides an "oracle"
for testing. The models are often "seeded" with errors to derive
test data which distinguish these errors. The data sets derived
cause errors to be isolated and located as well as detected
during the testing phase of the construction and integration
stages

.

To develop a model of the software for a particular stage in
the developnent lifecycle a formal representation compatible with
the simulation system is developed. This may consist of the
formal requirements specification, the design specification, or
the actual code, as appropriate to the stage, or it may be a

separate model of the program behavior. If a different model is
used, then the developer will need to demonstrate and verify that
the model is a complete, consistent, and accurate representation
of the software at the stage of development being verified.

The next steps are to develop a model of the computational
environment in which the system will operate, a model of the
hardware on which the system will be implemented, and a model of
the external demands on the total system. These models can be
largely derived from the requirements, with statistical
representations developed for the external demand and the
environmental interactions. The software behavior is then
simulated with these models to determine if it is satisfactory.

Simulating the system at the early development stages is the
only means of determining the system behavior in response to the
eventual implementation environment. At the construction stage,
since the code is sometimes developed on a host machine quite
different from the target machine, the code raay be run on a

simulation of the target machine under interpretive control

.

Simulation also plays a useful role in determining the
performance of algorithms. While this is often directed at

analyzing competing algorithms for cost, resource, or performance
tradeoffs, the simulation under real loads does provide error
informat ion

.

-21-

3 . 2 Test Data Generation

Test data generation is the critical step in testing. Test
data sets must contain not only input to exercise the software,
but must also provide the corresponding correct output responses
to the test data inputs. Thus the development of test data sets
involves two aspects: the selection of data input and the
determination of expected response. Often the second aspect is
most difficult. As discussed previously, hand calculation and
simulation are two techniques used to derive expected output
response. For very large or complicated systems, manual
techniques are unsatisfactory and insufficient.

One promising direction is the development of executable
specification languages and specification language analyzers
[SRS79], [TEIC77]. These can be used, as simulation is used, to
act as an oracle providing the responses for the test data sets.
Some analyzers such as the REVS system [BELL77] include a
simulation capability. An executable specification language
representation of a software system is an actual implementation
of the design, but at a higher level than the final code.
Usually interpreted rather than compiled, it is less efficient,
omits certain details found in the final implementation, and is
constructed with certain information "hidden." This
implementation would be in Parnas' terms [PARN77] an "abstract
program," representing in less detail the final implementation.
The execution of the specification language "program" could be on
a host machine quite different from the implementation target
machine

.

Test data can be generated randomly with specific
distributions chosen to provide some statistical assurance that
the system, when tested, is error free. This is a method often
used in high density LSI testing. Unfortunately, while errors in
LSI chips appear correlated and statistically predictable, this
is not true of software. Until recently the domains of programs
were far more intractable than those occuring in hardware. This
gap is closing with the advances in VLSI.

There is another statistical testing procedure for hardware
that applies to certain software applications. Often integrated
circuits are tested against a standard "correct" chip using
statistically derived test sets. Applications of this technique
include testing mass produced firmware developed for
microcomputers embedded in high volume production devices such as
ovens, automobiles, etc .

' A second possibility is to use this
concept to test "evolving" software. For the development of an
upwardly compatible operating system, some of the test sets can
be derived by using a current field tested system as an oracle.
Compiler testing employs a similar test set for each different
compiler tested. However, since most software is developed as a

"one of a kind" item, this approach generally does not apply.

-22-

^..w apparent difficulty of applying statistical tests
to software, test data are derived in two global ways, often
called "black box" or functional analysis and "white box" or
structural analysis. In functional analysis, the test data are
derived from the external specification of the software behavior.
No consideration is usually given to the internal organization,
logic, control, or data flow in developing test data sets based
on functional analysis. One technique, design-based functional
analysis, includes examination and analysis of data structure and
control flow requirements and specifications throughout the
hierarchical decomposition of the system during the design. In a
complementary fashion, tests derived from structural analysis
depend almost completely on the internal logical organization of
the software. Most structural analysis is supported by test
coverage metrics such as path coverage, branch coverage, etc.
These criteria provide a measure of completeness of the testing
process

.

3.3 Functional Testing Techniques

The most obvious and generally intractable functional
testing procedure is exhaustive testing. As was described in
Qiapter 2, only a fraction of programs can be exhaustively tested
since the domain of a program is usually infinite or infeasibly
large and cannot be used as a test data set. To attack this
problem, characteristics of the input domain are examined for
ways of deriving a representative test data set which provides
confidence that the system will be fully tested.

As was stated in Oiapter 2, test data must be derived from
an analysis of the functional requirements and include
representive elements from all the variable domains. These data
should include both valid and invalid inputs. Generally, data in
test data sets based on functional requirements analysis can be
characterized as extremal , non- extremal , or special depending on
the source of their derivation. The properties of these elements
may be simple val ues , or for more complex data structures they
may include such attributes as type and dimension .

BOUNDARY VALUE ANALYSIS.
The problem of deriving test data sets is to partition the

program domain in some meaningful way so that input data sets
which span the partition can be determined. There is no direct,
easily stated procedure for forming this partition. It depends on
the requirements, the program domain, and the creativity and
problem understanding of the programmer. This partitioning,
however, should be performed throughout the development
1 ifecycl e

.

At the requirements stage a coarse partitioning is obtained
according to the overall functional requirements. At the design

-23-

stage, additional functions are introduced Which define the
separate modules allowing for a refinement of the partition.
Finally, at the coding stage, submodules implementing the design
modules introduce further refinements. The use of a top down
testing methodology allows each of these refinements to be used
to construct functional test cases at the appropriate level. The
following references [HOWD78] and [MYER79] give examples and
further guidance.

Once the program domain is partitioned into input classes,
functional analysis can be used to derive test data sets. Test
data should be chosen which lie both inside each input class and
at the boundary of each class. Output classes should also be
covered by input which causes output at each class boundary and
within each class. These data are the extremal and non-extremal
test sets. Determination of these test sets is often called
boundary val ue anal ysis or stress testing .

The boundary values chosen depend on the nature of the data
structures and the input domains. Consider the following FORTRAN
exampl e

:

INTEGER X
REAL A{ 100, 100

)

If X is constrained, a< X <b, then X should be tested for valid
inputs a+1 , b-1 , and invalid inputs a and b. The array should be
tested as a single element array A(1 , 1) and as a full 100 x 100
array. The array element values A(I,J) should be chosen to
exercise the corresponding boundary values for each element.
Examples for more complex data structures can be found in
[HOWD79], [MYER79].

ERROR GUESSING AND SPECIAL VALUE ANALYSIS.
Myers suggests that some people have a natural intuition for

test data generation [MYER79]. While this ability cannot be
completely described nor formalized, certain test data seem
highly probable to catch errors. Some of these are in the
category Howden [HOWD80] calls special, others are certainly
boundary values. Zero input values and input values which cause
zero outputs are examples. For more complicated data structures,
the equivalent null data structure such as an empty list or stack
or a null matrix should be tested. Often the single element data
structure is a good choice. If numeric values are used in
arithmetic computations, then the test data should include values
which are numerically very close and values which are numerically
quite different. Guessing carries no guarantee for success, but
neither does it carry any penalty.

-24-

CAUSE EFFECT GRAPHING.
Cause effect graphing [MYER79] is a technique for developing

test cases for programs from the high level specifications. A
high level specification of requirements states desired
characteristics of behavior for the system. These characteristics
can be used to derive test data. Problems arise, however, of a
combinatorial nature. For example, a program that has specified
responses to eight characteristic stimuli (called causes) given
some input has potentially 256 "types" of input (ie . those with
characteristics 1 and 3, those with characteristics 5, 7, and 8,
etc.). A naive approach to test case generation would be to try
to generate all 256 types. A more methodical approach is to use
the program specifications to analyze the program's effect on the
various types of inputs.

The program' s output domain can be partitioned into various
classes called effects. For example, inputs with characteristic
2 might be subsumed by those with characteristics 3 and 4. Hence
it would not be necessary to test inputs with just characteristic
2 and also inputs with characteristics 3 and 4, for they cause
the same effect. This analysis results in a partitioning of the
causes according to their corresponding effects.

A limited entry decision table is then constructed from the
directed graph reflecting these dependencies (ie . causes 2 and 3
result in effect 4, causes 2, 3, and 5 result in effect 6, etc.).
The decision table is then reduced [METZ77] and test cases chosen
to exercise each column of the table. Since many aspects of the
cause effect graphing can be automated, it is an attractive tool
for aiding in the generation of functional test cases.

DESIGN BASED FUNCTIONAL TESTING.
The techniques described above derive test data sets from

analysis of functions specified in the requirements. Howden has
extended functional analysis to functions used in the design
process [HOWD80]. A distinction can be made between requirements
functions and design functions. Requirements functions describe
the overall functional capabilities of a program. In order to
implement a requirements function it is usually necessary to
invent other "smaller functions". These other functions are used
to design the program. If one thinks of this relationship as a

tree structure, then a requirements function would be represented
as a root node. All functional capabilities represented by boxes
at the second level in the tree correspond to design functions.
The implementation of a design function may require the invention
of other design functions. This successive refinement during top
down design can then be represented as levels in the tree
structure, where the n+lst level nodes are refinements or
sub functions of the nth level functions.

To utilize design based functional testing, the functional
design trees as described above are constructed . The trees

-25-

document the functions used in the design of the program. The
functions included in the design trees must be chosen carefully.
The most important selection feature is that the function be
accessible for independent testing. It must be possible to apply
the appropriate input values to test the function, to derive the
expected values for the function, and to observe the actual
output computed by the code implementing the function.

Each of the functions in the functional design tree, if top
down design techniques are followed, can be associated with the
final code used to implement that function. This code may consist
of one or more procedures, parts of a procedure, or even a single
statement. Design-based functional testing requires that the
input and output variables for each design function be completely
specified. Given these multiple functions to analyze, test data
generation proceeds as described in the boundary value analysis
discussion above. Extremal, non- extremal , and special values
test data should be selected for each input variable. Test data
should also be selected which results in the generation of
extremal, non-extremal, and special output values.

3.4 Structural Testing Techniques

Structural testing is concerned with ensuring sufficient
testing of the implementation of a function. Although used
primarily during the coding phase, structural analysis should be
used in all phases of the lifecycle where the software is
represented formally in some algorithmic, design or requirements
language. The intent of structural testing is to stress the
implementation by finding test data that will force sufficient
coverage of the structures present in the formal representation.
In order to determine whether the coverage is sufficient, it is
necessary to have a structural coverage metric. Thus the process
of generating tests for structural testing is sometimes known as
metric-based test data generation .

Metric-based test data generation can be divided into two
categories by the metric used: complexity-based testing or
coverage-based testing. In the latter, a criterion is used which
provides a measure of the number of structural units of the
software which are fully exercised by the test data sets. In the
former category, tests are derived in proportion to the software
complexity.

COVERAGE-BASED TESTING.
Most coverage metrics are based on the number of statements,

branches, or paths in the program which are exercised by the test
data. Such metrics can be used both to evaluate the test data and
to aid in the generation of the test data.

Any program can be represented by a graph. The nodes

-26-

represent statements or collections of sequential statements.
The control flow is represented by directed lines or edges which
connect the nodes. A node with a single exiting edge to another
node represents a sequential code segment. A node with multiple
exiting edges represents a branch predicate or a code segment
containing a branch predicate as the last statement.

On a particular set of data, a program will execute along a
particular path, where certain branches are taken or not taken
depending on the evaluation of branch predicates. Any program
path can be represented by a sequence, possibly with repeating
subsequences (when the program has backward branches), of edges
from the program graph. These sequences are called path
expressions . Each path or each data set may vary depending on the
number of loop iterations caused. A program with variable loop
control may have effectively an infinite number of paths. Hence,
there are potentially an infinite number of path expressions.

To completely test the program structure, the test data
chosen should cause the execution of all paths. Since this is
not possible in general, metrics have been developed which give a
measure of the quality of test data based on the proximity to
this ideal coverage. Path coverage deteirmination is further
complicated by the existence of infeasibl e paths . Often a
program has been inadvertently designed so that no data will
cause the execution of certain paths. Automatic determination of
infeasible paths is generally difficult if not impossible. A main
theme in structured top down design [DIJK72] [JACK75] [YOUR79] is
to construct modules which are simple and of low complexity so
that all paths, excluding loop iteration, may be tested and that
infeasible paths may be avoided.

All techniques for determining coverage metrics are based on
graph representations of programs. A variety of metrics exist
ranging from simple statement coverage to full path coverage.
There have been several attempts to classify these metrics
[MILL77]; however, new variations appear so often that such
attempts are not always successful. We will discuss the major
ideas without attempting to cover all the variations.

The simplest metric measures the percentage of statements
executed by all the test data. Since coverage tools supply
information about which statements have beep executed (in
addition to the percentage of coverage), the results can guide
the selection of test data to insure complete coverage. To apply
the metric, the program or module is instrumented by hand or by a

preprocessor. A postprocessor or manual analysis of the results
reveal the level of statement coverage. Determination of an
efficient and complete test data set satisfying this metric is
more difficult. Branch predicates that send control to omitted
statements should be examined to help determine input data that
will cause execution of omitted statements.

-27-

A slightly stronger metric measures the percentage of
segments executed under the application of all test data. A
segment in this sense corresponds to a decision- to- dec is ion path
(dd-path) [MILL77]. It is a portion of a program path beginning
with the execution of a branch predicate and including all
statements up to the evaluation (but not execution) of the next
branch predicate. Segment coverage guarantees statement coverage.
It also covers branches with no executable statements, eg. an IF-
THEN-ELSE with no ELSE statements still requires data causing the
predicate to be evaluated as both true and false. Techniques
similar to those used for statement coverage are used for
applying the metric and deriving test data.

The next logical step is to strengthen the metric by
requiring separate coverage for both the exterior and interior of
loops. Segment coverage only requires that both branches from a
branch predicate be taken. For loops, segment coverage can be
satisfied by causing the loop to be executed one or more times
(interior test) and then causing the loop to be exited (exterior
test). Requiring that all combinations of predicate evaluations
be covered requires that each loop be exited without interior
execution for at least one data set. This metric requires more
paths to be covered than segment coverage requires . Two
successive predicates will require at least four sets of test
data to provide full coverage. Segment coverage can be satisfied
by two tests, while statement coverage may require only one test
for two successive predicates.

Implementation of the above metric is again similar to that
for statement and segment coverage. Variations on this metric
include requiring at least "k" interior iterations per loop or
requiring that all 2**n combinations of Boolean variables be
applied for each n variable predicate expression. This latter
variation has led to a new path testing technique called
finite-domain testing [WHIT78].

Automated tools for instrumenting and analyzing the code
have been available for a few years [MILL75] [LYON74] [RAMA74]
[MAIT80]. These tools are generally applicable to most of
the coverage metrics described above. Automation of test
data generation is less advanced. Often test data are
generated by iterating the use of analyzers with manual
methods for deriving tests. A promising but expensive way to
generate test data for path testing is through the use of
symbolic executors [BOYE75] and [HOWD77]. More on the use of
these tools will be discussed in a later section.

COMPLEXITY-BASED TESTING.
Several complexity measures have been proposed recently.

Among these are cyclomatic complexity [MCCA76], software science
[HALS77], and Chapin' s software complexity measure [CHAP79].
These and many other metrics are designed to analyze the

-28-

complexity of software systems. Most, although valuable new
approaches to the analysis of software, are not suitable, or have
not been applied to the problem of testing. The McCabe metrics
are the exception.

McCabe actually proposed three metrics: cycl omat ic ,

essential
, and actual complexity . All three are based on

a graphical representation of the program being tested. The
first two are calculated from the program graph, while the third
is a runtime metric.

McCabe uses a property of graph theory in defining
cyclomatic complexity. There are sets of linearly independent
program paths through any program graph. A maximal set of these
linearly independent paths, called a basis set, can always be
found. Intuitively, since the program graph and any path through
the graph can be constructed from the basis set, the size of this
basis set should be related to the program complexity. From graph
theory, the cyclomatic number of the graph, V(G), is given by:

V(G) =e-n+p

for a graph G with number of nodes n, edges e, and connected
components p. The number of linearly independent program paths
though a program graph is V(G)+p, a number McCabe calls the
cyclomatic complexity of the program. Cyclomatic complexity,
CV(G), where:

CV(G) =e-n+2p

can be easily calculated from the program graph.

A proper subgraph of a graph, G, is a collection of nodes
and edges such that if an edge is included in the subgraph, then
both nodes it connects in the complete graph, C, must be in the
subgraph. Any flow graph can be reduced by combining sequential
single entry, single exit nodes into a single node. Structured
constructs appear in a program graph as a proper subgraph with
only one node which is single entry and whose entering edge is
not in the subgraph, and with only one node which is single exit
and whose exiting edge is not included in the subgraph. For all
other nodes, all connecting edges are included in the subgraph.
This single entry, single exit subgraph can then be reduced to
a single node. Essential complexity is based on counting these
single entry, single exit proper subgraphs of two nodes or
greater. Let the number of these subgraphs be m, then essential
complexity EV(G) is defined:

EV(G) = CV(G)-m

The program graph for a program built with structured constructs
will obviously have all proper subgraphs as single exit, single

-29-

entry. The number of proper subgraphs of a graph G of more than
one node is CV(G)-1. Hence the essential complexity of a
structured program is one. Essential complexity is then a
measure of the " unstructuredness" of a program.

Actual complexity, AV, is just the number of paths executed
during a run. A testing strategy can be based on these metrics.
If for a test data set, the actual complexity is less than the
cyclomatic complexity and all edges have been executed, then
either there are more paths to be tested or the complexity can be
reduced by CV(G)-AV by eliminating decision nodes and reducing
portions of the program to in-line code. The cyclomatic
complexity metric gives the number of linearly independent paths
from analysis of the program graph. Some of these paths may be
infeasible. If this is the case, then the actual complexity will
never reach the cyclomatic complexity. Using a tool [MAIT80]
which derives the three complexity metrics, both a testing and a

programming style can be enforced.

3.5 Test Data Analysis

After the construction of a test data set it is necessary to
determine the "goodness" of that set. Simple metrics like
statement coverage may be required to be as high as 90% to 95%.
It is much more difficult to find test data providing 90%
coverage under the more complex coverage metrics. However, it
has been noted [BROW73] that methodologies based on the more
complex metrics with lower coverage requirements have uncovered
as many as 90% of all program faults.

STATISTICAL ANALYSES AND ERROR SEEDING.
The most common type of test data analysis is statistical.

An estimate of the number of errors in a program can be obtained
from an analysis of the errors uncovered by the test data. In
fact, as we shall see, this leads to a dynamic testing technique.

Let us assume that there are some number of errors, E, in
the software being tested. There are two things we would like to
know, a maximum liklihood estimate for the number of errors and a

level of confidence measure on that estimate. The technique is to
insert known errors in the code in some way that is statistically
similar to the actual errors. The test data is then applied and
the number of known seeded errors and the number of original
errors uncovered is determined. In [MILL72] it is noted that, if
one assumes that the statistical properties of the seeded and
original errors is the same and that the testing and seeding are
statistically unbiased, then

estimate E = IS/K

where S is the number of seeded errors, K is the number of

-30-

discovered seeded errors, and I is the number of discovered
unseeded errors. This estimate obviously assumes that the
proportion of undetected errors is very likeJy to be the same for
the seeded and original errors.

How good is this estimate? We would like to ascertain the
confidence level for the various predicted error levels. Again
from [MILL72], assuming that all seeded errors are detected
(K=S), the confidence that number of errors is less than or equal
to E is given by:

0 ; I > E

S

S + E + 1

; I<= E

More elaborate formulae for the case that all seeded errors are
not found, and for cases where partial results are known are
given in [MILL72] and [TAUS77].

Note that when E = 0 and no errors are detected other than
seeded errors (I <=E) when testing, the confidence level is very
high (for S= 99, confidence = 99%). Testing for the error free
case can be accomplished with high confidence as long as no
errors are uncovered. On the other hand, if nonseeded errors are
discovered and the estimate for E is higher, our confidence in
the estimate also decreases. If the E = 10, then with S = 100,
our confidence drops to 90%. When the number of actual errors
approaches or exceeds the number of seeded errors, then the
confidence in our estimates decreases dramatically. For example,
if E = 10 and S = 9, then the confidence is only 45%.

A strategy for using this statistical technique in dynamic
testing is to monitor the maximum 1 ikl ihood estimator, and
perform the confidence level calculation as testing progresses.
If the estimator gets high relative to the number of seeded
errors, then it is unlikely that a desirable confidence level can
be obtained. The errors should then be corrected and the testing
resumed. If the number of real errors discovered remains small or
preferably zero as the number of seeded errors uncovered
approaches the total seeded, then our confidence level for an
error free program increases

.

Tausworthe [TAUS77] discusses a method for seeding errors
which has some hope of being similar statistically to the actual
errors. He suggests randomly choosing lines at which to insert
the error, and then making various different modifications to the
code introducing errors. The actual modifications of the code are
similar to those used in mutation testing as described below.

-31-

MUTATION ANALYSIS.
A relatively new metric developed by DeMillo, Lipton, and

Sayward is called mutation analysis [DEMI78]. This method rests
on the competent programmer hypothesis which states that a
program written by a competent programmer will be, after
debugging and testing, "almost correct." The basic idea of the
method is to seed the program to be tested with errors, creating
several mutants of the original program. The program and its
mutants are then run interpret ivel y on the test set. If the test
set is adequate, it is argued, it should be able to distinguish
between the program and its mutants

.

The method of seeding is crucial to the success of the
technique and consists of modifying single statements of the
program in a finite number of "reasonable" ways. The developers
conjecture a coupl ing effect which implies that these "first
order mutants" cover the deeper, more subtle errors which might
be represented by higher order mutants . The method has been
subject to a small number of trials and so far has been
successfully used interactively to develop adequate test data
sets. It should be noted that the method derives both branch
coverage and statement coverage metrics as special cases

.

It must be stressed that mutation analysis, and its
appropriateness, rests on the competent programmer and coupling
effect theses. Since neither is provable, they must be
empirically demonstrated to hold over a wide variety of programs
before the method of mutations can itself be validated.

3.6 Static Analysis Techniques

As was described in Chapter 2, analytical techniques can be
categorized as static or dynamic. The application and analysis of
test data is usually described as a dynamic activity, since it
involves the actual execution of code. Static analysis does not
usually involve program execution. Many of the general
techniques discussed in 3.1, such as formal proof techniques and
inspections are static analysis techniques. In a true sense,
static analysis is part of any testing technique. Any analysis
to derive test data, calculate assertions, or determine
instrumentation breal<:point s must involve some form of static
analysis, although the actual verification is achieved through
dynamic testing. As was mentioned in Chapter 3, the line between
static and dynamic analysis is not always easily drawn. For
example, proof of correctness and symbolic execution both
"execute" code, but not in a real environment.

Most static analysis is performed by parsers and associated
translators residing in compilers. Depending upon the
sophistication of the parser, it uncovers errors ranging in
complexity from ill- formed arithmetic expressions to complex type

-32-

incompatibilities. In most compilers, the parser and translator
are augmented with additional capabilities that allow activities
such as code optimization, listing of variable names, and pretty
printing, all such activities being useful in the production of
quality software. Preprocessors are also frequently used in
conjunction with the parser. These may perform activities such
as allowing "structured programming" in an unstructured
programming language, checking for errors such as mismatched
common areas, and checking for module interface
incompatibilities. The parser may also serve in a policing role.
Thus software shop coding standards can be enforced, quality of
code can be monitored, and adherence to programming standards
(such as FORTRAN?? [ANSI?8]) can be checked.

FLOW ANALYSIS.
Data and control flow analysis are similar in many ways.

Both are based upon graphical representation. In control flow
analysis, the program graph has nodes which represent a statement
or segment possibly ending in a branch predicate. The edges
represent the allowed flow of control from one segment to
another. The control flow graph is used to analyze the program
behavior, to locate instrumentation breakpoints, to identify
paths, and in other static analysis activities. In data flow
analysis, graph nodes usually represent single statements, while
the edges still represent the flow of control. Nodes are
analyzed to determine the transformations made on program
variables. Data flow analysis is used to discover program
anomalies such as undefined or unreferenced variables. The
technique was introduced by Cocke and Allen [ALLE74], [ALLE76]
for global program optimization.

Data flow anomalies are more easily found than resolved.
Consider the following FORTRAN code segment:

SUBROUTINE HYP(A,B,C)
u 0.5
w 1/V
Y A ** W
Y E ** W
Z X + Y
C Z ** (V

There are several anomalies in this code segment. One variable,
U, is defined and never used while three variables, X, V and E,

are undefined when used. It is possible that U was meant to be V,

E was meant to be B, and the first occurrence of Y on the left of
an assignment was a typo for X. The problem is not in detecting
these errors, but in resolving them. The possible solution
suggested may not be the correct one. There is no answer to this
problem, but data flow analysis can help to detect the anomalies,
including ones more subtle than those above.

-33-

In data flow analysis, we are interested in tracing the
behavior of program variables as they are initialized and
modified while the program executes. This behavior can be
classified by when a particular variable is referenced , defined ,

or undefined in the program. A variable is referenced when TEs
value must be obtained from memory during the evaluation of an
expression in a statement. For example, a variable is referenced
when it appears on the right hand side of an assignment
statement, or when it appears as an array index anywhere in a
statement. A variable is defined if a new value for that variable
results from the execution of a statement, such as when a
variable appears on the left hand side of an assignment. A
variable is unreferenced when its value is no longer determinable
from the program flow. Examples of unreferenced variables are
local variables in a subroutine after exit and FORTRAN DO indices
on loop exit

.

Data flow analysis is performed by associating, at each node
in the data flow graph, values for tokens (representing program
variables) which indicate whether the corresponding variable is
referenced, unreferenced, or defined with the execution of the
statement represented by that node. If symbols, for instance u,
d, r, and 1 (for null), are used to represent the values of a

token, then path expressions for a variable (or token) can be
generated beginning at, ending in, or for some particular node.
A typical path expression might be drlllllrrllllldllrllu, which
can be reduced through eliminating nulls to drrrdru. Such a path
expression contains no anomalies, but the presence of ...dd...
in an expression, indicating a variable defined twice without
being referenced, does identify a potential anomaly. Most
anomalies, ..ur.., r..., etc. can be discovered through analysis
of the path expressions.

To simplify the analysis of the flow graph, statements can
be combined as in control flow analysis into segments of
necessarily sequential statements represented by a single node.
Often, however, statements must be represented by more than one
node. Consider,

IF(X . C?r. 1) X = X - 1

The variable X is certainly referenced in the statement, but it
may be defined only if the predicate is true. In such a case, two
nodes would be used, and the graph would actually represent code
which looked like

IF(X .C?r. 1) 100,200
100 X = X - 1

200 CONTINUE

Another problem requiring node splitting arises at the last

-34-

statement of a FORTRAN DO loop after Which the index variable
becomes undefined only if the loop is exited. Subroutine and
function calls introduce further problems, but they too can be
resolved. The use of data flow analysis for static analysis and
testing is described in [OSTE76] and [FOSD76].

SYMBOLIC EXECUTION.
Symbolic execution is a method of symbolically defining data

that force program paths to be executed. Instead of executing the
program with actual data values, the variable names that hold the
input values are used. Thus all variable manipulations and
decisions are made symbolically. As a consequence, all variables
become string variables, all assignments become string
assignments and all decision points are indeterminate. To
illustrate, consider the following small pseudocode program:

IN a,b;
a : = a* a ;

X ;= a + b;
IF x=0 THEN X := 0 ELSE x := 1;

The symbolic execution of the program will result in the
following expression:

if a*a + b = 0 then x := 0 else if a*a + b ~= 0 then x := 1

Note that we are unable to determine the result of the equality
test for we only have symbolic values available.

The result of a symbolic execution is a large, complex
expression. The expression can be decomposed and viewed as a
tree structure where each leaf represents a path through the
program. The symbolic values of each variable are known at every
point within the tree and the branch points of the tree represent
the decision points of the program. Every program path is
represented in the tree, and every branch path is effectively
taken

.

If the program has no loops, then the resultant tree
structure is finite. The tree structure can then be used as an
aid in generating test data that will cause every path in the
program to be executed. The predicates at each branch point of
the tree structure for a particular path are then collected into
a conjunction. Data that causes a particular path to be
executed can be found by determining which data will make the
path conjunction true. If the predicates are equalities,
inequalities and orderings, the problem of data selection becomes
the classic problem of trying to solve a system of equalities and
orderings

.

-35-

There are two major difficulties with using symbolic
execution as a test set construction mechanism. The first is the
combinatorial explosion inherent in the tree structure
construction. The number of paths in the symbolic execution tree
structure may grow as an exponential in the length of the program
leading to serious computational difficulties. If the program
has loops, then the symbolic execution tree structure is
necessarily infinite. Usually only a finite number of loop
executions is required enabling a finite loop unwinding to be
performed. The second difficulty is that the problem of
determining whether the conjunct has values which satisfy it is
undecidable even with restricted programming languages. For
certain applications, however, the method has been successful.

Another use of symbolic execution techniques is in the
construction of verification conditions from partially annotated
programs. Typically, the program has attached to each of its
loops an assertion, called an invariant, that is true at the
first statement of the loop and at the last statement of the loop
(thus the assertion remains "invariant" over one execution of the
loop) . From this assertion, an assertion true before entrance to
the loop and assertions true after exit of the loop can be
constructed. The program can then be viewed as "free" of loops
(ie . each loop is considered as a single statement) and
assertions extended to all statements of the program (so it is
fully annotated) using techniques similar to the backward
substitution method described above for symbolic execution. A
good survey of these methods appears in [HANT76] and examples of
their use in verifiers appear in [LUCK79] and [GERH80].

3.7 Dynamic Analysis Techniques

Dynamic analysis is usually a three step procedure involving
static analysis and instrumentation of a program, execution of
the instrumented program, and finally, analysis of the
instrumentation data. Often this is accomplished interactively
through automated tools.

The simplest instrumentation technique for dynamic analysis
is the insertion of a turnstyle or a counter. Branch or segment
coverage and other such metrics are evaluated in this manner. A
preprocessor analyzes the program (usually by generating a

program graph) and inserts counters at the appropriate places.
Consider

IF (X) 10,10,15

10 Statement i

-36-

15 Statement j

DO 20 I = J, K, L

20 Statement k

A preprocessor might instrument the program segment a;
fol lows

:

IF (X) 100,101,15

100 N(100) = N(100) + 1

GO TO 10
101 N(101) = N(101) + 1

10 Statement i

15 N(15) = N(15) + 1

Statement j

I = J
IF (I.GT.K) THEN 201

20 N(20) = N(20) + 1

Statement k
I = I + L
IF (I.LE.K) THEN 20

201 N(201) = N(201) + 1

For the IF statement, each possible branch was instrumented. Note
that we used two counters N(100) and N(101) even though the
original code branches to the same statement label. The original
code had to be modified for the DO loop in order to get the
necessary counters inserted. Note that two counters are used,
N(20) for the interior execution count and N(201) for the
exterior of the loop.

Simple statement coverage requires much less instrumentation
than branch coverage or more extensive metrics. For complicated
assignments and loop and branch predicates, more detailed
instrumentation is employed. Besides simple counts, it is
interesting to know the maximum and minimum values of variables
(particularly useful for array subscripts), the initial and last
value, and other constraints particular to the application.

Instrumentation does not have to rely on direct code

-37-

insertion. Often calls to runtime routines are inserted rather
than actual counters. Some instrumented code is passed through a
preprocessor/ compil er which inserts the instrumentation only if
certain commands are set to enable it.

Stucki introduced the concept of instrumenting a program
with dynamic assertions . A preprocessor generates
instrumentation for dynamically checking conditions often as
complicated as those used in program proof techniques [STUC77].
These assertions are entered as comments in program code
and are meant to be permanent. They provide both
documentation and means for maintenance testing. All or
individual assertions are enabled using simple commands and the
preprocessor

.

There are assertions which can be employed globally,
regionally, locally, or at entry and exit. The general form for a
local assertion is:

ASSERT LOCAL(extended- logical - express ion) [optional
qual if ier] [control

]

The optional qualifiers are ALL, SOME, etc. The control options
include LEVEL, which controls the levels in a block structured
program; CONDITIONS, which allows dynamic enabling of the
instrumentation; and LIMIT, which allows a specific number of
violations to occur. The logical expression is used to represent
an expected condition to be dynamically verified. For example:

ASSERT LOCAL (A(2 : 6 , 2 : 10) . NE . 0) LIMIT 4

placed within a program will cause the values of array elements
A(2, 2) ,A(2, 3) , . . . ,A(2, 10) ,A(3, 2) , . . . ,A(6, 10) to be checked
against a zero value at that locality. After four violations
during the execution of the program, the assertion will become
fal se .

The global, regional, and entry-exit assertions are similar
in structure. Note the similarity with verification conditions,
especially if the entry-exit assertions are employed.
Furthermore, symbolic execution can be employed to generate the
assertions as it can be used with proof techniques. Some efforts
are currently underway to integrate dynamic assertions, proof
techniques, and symbolic evaluation. One of these is described
belov/.

There are many other techniques for dynamic analysis. Most
involve the dynamic (under execution) measurement of the behavior
of a part of a program, where the features of interest have been
isolated and instrumented based on a static analysis. Some
typical techniques include expression analysis, flow analysis,
and timing analysis.

-38-

3.8 Combined Methods

There are many ways in which the techniques described above
can be used in concert to form a more powerful and efficient
testing technique. One of the more common combinations today is
the merger of standard testing techniques with formal
verification. Our ability, through formal methods, to verify
significant segments of code is improving [GERH78], and moreover
there are certain modules, which for security or reliability
reasons, justify the additional expense of formal verification.

Other possibilities include the use of symbolic execution or
formal proof techniques to verify segments of code, which through
coverage analysis have been shown to be most frequently executed.
Mutation analysis, for some special cases like decision tables,
can be used to fully verify programs [BUDD78b] . Formal proof
techniques may be useful in one of the problem areas of
mutation analysis, the determination of equivalent mutants.

Another example, combining dataflow analysis, symbolic
execution, elementary theorem proving, dynamic assertions, and
standard testing is suggested in [OSTE80]. Osterweil addresses
the issue of how to combine efficiently these powerful techniques
in one systematic method. As has been mentioned, symbolic
evaluation can be used to generate dynamic assertions. Here,
paths are executed symbolically so that each decision point and
every loop has an assertion. The assertions are then checked for
consistency using both dataflow and proof techniques. If all the
assertions along a path are consistent, then they can be reduced
to a single dynamic assertion for the path. Theorem proving
techniques can be employed to "prove" the path assertion and
termination, or the path can be tested and the dynamic assertions
evaluated for the test data.

The technique allows for several tradeoffs between testing
and formal methods. For instance, symbolically derived dynamic
assertions are more reliable than manually derived assertions,
but cost more to generate. Consistency analysis of the assertions
using proof and dataflow techniques adds cost at the front end,

but reduces the execution overhead. Finally there is the obvious
tradeoff between theorem proving and testing to verify the
dynamic assertions.

3.9 Test Support Tools

Testing, like program development, generates large amounts
of information, necessitates numerous computer executions, and
requires coordination and communication between workers. Support
tools and techniques can ease the burden of test production, test

execution, general information handling, and communication.
General system utilities and text processing tools are invaluable

-39-

for test preparation, organization, and modification. A well
organized and structurable file system and a good text editor are
a minimum support set. A more powerful support set includes data
reduction and report generation tools. Library support systems
consisting of a data base management system and a configuration
control system are as useful during testing as during software
development since data organization, access, and control are
required for management of test files and reports. Documentation
can be viewed as a support technique. In addition to the general
purpose support tools and techniques, specific test support tools
exist. Test drivers and test languages are in this category. The
following paragraphs will discuss these test specific support
tools and techniques.

TEST DOCUMENTATION.
FIPS PUB 38 CFIPS76], the NBS guideline for software

documentation during the development phase, recommends test
documentation be prepared for all multipurpose or multiuser
projects and for other software development projects costing over
$5000. FIPS 38 recommends the preparation of a test plan and a

test analysis report. The test plan should identify test
milestones and provide the testing schedule and requirements. In
addition, it should include specifications, descriptions, and
procedures for all tests; and the test data reduction and
evaluation criteria. The test analysis report should summarize
and document the test results and findings. The analysis summary
should present the software capabilities, deficiencies, and
recommendations. As with all types of documentation, the extent,
formality, and level of detail of the test documentation are
functions of agency ADP management practice and will vary
depending upon the size, complexity, and risk of the project.

TEST DRIVERS.
Unless the module being developed is a stand-alone program,

considerable auxiliary software must be written in order to
exercise and test it. Auxiliary code which sets up an appropriate
environment and calls the module is termed a driver while code
which simulates the results of a routine called by the module is
a stub . For many modules both stubs and drivers must be written
in order to execute a test.

ViJhen testing is performed incrementally, an untested module
is combined with a tested one and the package is then tested.
Such packaging can lessen the number of drivers and/or stubs
which must be written. When the lowest level of modules, those
which call no other modules, are tested first and then combined
for further testing with the modules that call them, the need for
writing stubs can be eliminated. This approach is called
bottom-up testing . Bottom-up testing still requires that test
drivers be constructed. Testing which starts with the
executive module and incrementally adds modules which it calls,
is termed top- down testing . Top-down testing requires that stubs

-40-

be created to simulate the actions of called modules that have
not yet been incorporated into the system. The testing order
utilized should be coordinated with the developnent methodology
used .

AUTOMATIC TEST SYSTEMS AND TEST LANGUAGES.
The actual performance of each test requires the execution

of code with input data, an examination of the output, and a
comparison of the output with the expected results. Since the
testing operation is repetitive in nature, with the same code
executed numerous times with different input values, an effort
has been made to automate the process of test execution. Programs
that perform this function of initiation are called test drivers ,

test harnesses , or test systems .

The simplest test drivers merely reinitiate the program
with various input sets and save the output . The more
sophisticated test systems accept data inputs, expected outputs,
the names of routines to be executed, values to be returned by
called routines, and other parameters. These test systems not
only initiate the test runs but compare the actual output with
the expected output and issue concise reports of the performance.
TPL/2.0 [PANZ78] which uses a test language to describe test
procedures is an example of such a system. In addition to
executing the tests, verifying the results and producing reports,
the system helps the user generate the expected results.

PRUFSTAND [SNEE78] is an example of a comprehensive test
system. It is an interactive system in which data values are
generated automatically or are requested from the user as they
are needed. The system is comprised of a:

. preprocessor to instrument the code

. translator to convert the source data descriptors into an
internal symbolic test data description table.

. test driver to initialize and update the test environment

. test stubs to simulate the execution of called modules

. execution monitor to trace control flow through the test
ob j ect

. result validator

. test file manager

. post processor to manage reports

A side benefit of a comprehensive test system is that it

establishes a standard format for test materials, which is

-41-

extremely important for regression testing. Currently automatic
test driver systems are expensive to build and consequently are

not in widespread use.

-42-

Chapter 4 Summary

In the previous sections we have surveyed many of the
techniques used to validate software systems. Of the methods
discussed, the most successful have been the disciplined manual
techniques, such as walkthroughs, reviews, and inspections,
applied to all stages in the lifecycle (CfA'CA76]). Discovery of
errors within the first stages of development (requirements and
design) is particularly critical since the cost of these errors
escalates significantly if they remain undiscovered until
construction or later. Until the development products at the
requirements and design stages become formalized and hence
amenable to automated analysis, disciplined manual techniques
will continue to be key verification techniques.

For the construction stage, automated techniques can be of
great value. The ones in widest use are the simpler static
analysis techniques (such as type checking), automated test
coverage calculation, automated program instrumentation, and the
use of simple test harnesses. These techniques are relatively
straightforward to implement and all have had broad use. Combined
with careful error documentation, they are effective validation
methods

.

Many of the techniques discussed in chapter 3 have not seen
wide use. The principal reasons for this include their
specialization (simulation), the high cost of their use (symbolic
execution), and their unproven applicability (formal proof of
correctness) . Many of these techniques represent the state of
the art in program val idation and are in areas where research is
continuing

.

The areas showing the most commercial interest and activity
at present include automated test support systems and increased
use of automated analysis. As more formal techniques are used
during requirements and design, an increase in automatic analysis
is possible. In addition, more sophisticated analysis techniques
are being applied to the code during construction. More complete
control and automation of the actual execution of tests, both in
assistance in generating the test cases and in the management of
the testing process and results, are also taking place.

We re-emphasize the importance of performing validation
throughout the lifecycle. One of the reasons for the great
success of disciplined manual techniques is their uniform
applicability at requirements, design, and coding phases. These
techniques can be used without massive capital expenditure.
However, to be most effective they require a serious commitment
and a disciplined application. Careful planning, clearly stated
objectives, precisely defined techniques, good management,

-43-

organized record keeping, and strong commitment are critical to
successful validation. A disciplined approach must be followed
during both planning and execution of the verification
activities

.

We view the integration of validation with software
development as so important that we suggest that it be an
integral part of the requirements statement. Validation
requirements should specify the type of manual techniques, the
tools, the form of project management and control, the
development methodology, and acceptability criteria which are to
be used during software development. These requirements are in
addition to the functional requirements of the system ordinarily
specified at this stage. Thus embedded within the project
requirements would be a contract aimed at enhancing the quality
of the completed software.

A major difficulty with a proposal such as the above is that
we have neither the means of accurately measuring the
effectiveness of validation methods nor the means of determining
"how valid" the software should be. We assume that it is not
possible to produce a "perfect" software system; the goal is to
try to get as close as required to perfect. In addition, what
constitutes perfect and how important it is for the software to
be perfect may vary from project to project. Some software (such
as reactor control systems) needs to approach perfection more
closely than other software (such as an address labeling
program). The definition of "perfect" (or quality attributes)
and its importance should be part of the validation requirements.
However, validation mechanisms written into the requirements do
not guarantee high quality software, just as the use of a
particular development methodology does not guarantee high
quality software. The evaluation of competing validation
mechanisms will be difficult.

A second difficulty with specifying a collection of
val idation methods in the requirements is that most val idation
tools do not exist in integrated packages. This means that the
group performing the verification must learn several tools that
may be difficult to use in combination. This is a problem that
must receive careful thought. For unless the combination is
chosen judiciously, their use can lead to additional costs and
errors. The merits of the tool collection as a whole musr be
considered as well as the usefulness of any single tool.

Future work in validation should address the above issues.
One possible course of action is to integrate the development and
validation techniques into a "programming environment". Such an
environment would encompass the entire software development
effort and include verification capabilities to:

1. Analyze requirements and specifications

-44-

2. Analyze and test designs

3. Provide support during construction (e.g. test case
generation, test harnesses)

4. Provide a data base sufficient to support
regression testing

The use of such environments has the potential to improve
greatly the quality of the completed software and also to provide
a mechanism for establishing confidence in the quality of the
software. At present the key to high quality remains the
disciplined use of a development methodology accompanied by
verification at each stage of the development. No single
technique provides a magic solution.

-45-

GLOSSARY

AUDIT: see DOD DEVELOPMENT REVIEWS

BLACK BOX TESTING: see FUNCTIONAL TESTING.

BOUNDARY VALUE ANALYSIS: a selction technique in which test
data are chosen to lie along "boundaries" of input domain
(or output range) classes, data structures, procedure
paramet er s , etc . Choices often include maximum, minimum, and
trivial values or parameters. This technique is often called
stress testing, (see 3.3)

BRANCH TESTING: a test method satisfying coverage criteria
that require that for each decision point each possible
branch be executed at least once, (see 3.4)

CAUSE EFFECT GRAPHING: test data selection technique. The
input and output domains are partitioned into classes and
analysis is performed to determine which input classes cause
which effect. A minimal set of inputs is chosen which will
cover the entire effect set. (see 3.3)

CERTIFICATION: acceptance of software by an authorized
agent usually after the software has been validated by the
agent, or after its validity has been demonstrated to the
agent

.

CRITICAL DESIGN REVIEW: see DOD DEVELOPMENT REVIEWS.

COMPLETE TEST SET: A test set containing data that causes
each element of a prespecified set of boolean conditions to
be true. Additionally, each element of the test set causes
at least at least one condition to be true. (see 2.2)

CONSISTENT CONDITION SET: A set of boolean conditions such
that complete test sets for the conditions uncover the same
errors . (see 2.2)

CYCLOMATIC COMPLEXITY: The cyclomatic complexity of a

program is equivalent to the number of decision statements
pi us 1 . (see 3.4)

DD (decision to decision) PATH: a path of logical code
sequence that begins at an entry or decision statement
and ends at a decision statement or exit, (see 3.4)

DEBUGGING: the process of correcting syntactic and logical
errors detected during coding. With the primary goal of

-46-

obtaining an executing piece
testing certain techniques
its usual ad hoc application

of code, debugging shares with
and strategies, but differs in

and local scope.

DESIGN BASED FUNCTIONAL TESTING: the application of test
data derived through functional analysis (see FUNCTIONAL
TESTING) extended to include design functions as well as
requirement functions. (see 3.3)

DOD DEVELOPMENT REVIEWS: A series of reviews required by DOD
directives. System requirements review, system design
review, preliminary design review, critical design review,
functional configuration audit, physical configuration
audit, and formal qualification review comprise the set of
required life cycle reviews, (see 3.1)

DRIVER: code which sets up an environment and calls a module
for test. (see 3.9)

DYNAMIC ANALYSIS: analysis that is performed by
executing the program code. (see 3.7)

DYNAMIC ASSERTION: a dynamic analysis technique which
inserts assertions about the relationship between program
variables into the program code. The truth of the
assertions is determined as the program executes, (see 3.7)

ERROR GUESSING: test data selection technique. The selection
criterion is to pick values that seem likely to cause
errors . (see 3.3)

EXHAUSTIVE TESTING: executing the program with all possible
combinations of values for program variables. (see 2.1)

EXTREMAL TEST DATA: test data that is at the extreme or
boundary of the domain of an input variable or which
produces results at the boundary of an output domain. (see
3.3)

FORMAL QUALIFICATION REVIEW: see DOD DEVELOPMENT REVIEWS.

FUNCTIONAL CONFIGURATION AUDIT: see DOD DEVELOPMENT REVIEWS.

FUNCTIONAL TESTING: application of test data derived from
the specified functional requirements without regard to the
final program structure, (see 3.3)

INFEASIBLE PATH: a sequence of program statements that can
never be executed. (see 3.4)

INSPECTION: a manual analysis technique in which the
program (requirements, design, or code) is examined in a

-47-

very formal and disciplined manner to discover errors. (see
3.1)

INSTRUMENTATION: The insertion of additional code into the
program in order to collect information about program
behavior during program execution, (see 3.7)

INVALID INPUT (TEST DATA FOR INVALID INPUT DOMAIN): test
data that lie outside the domain of the function the program
represents. (see 2.1)

LIFE CYCLE TESTING; the process of verifying the
consistency , completeness, and correctness of the software
entity at each stage in the development. (see 1.2)

METRIC BASED TEST DATA GENFRATION: the process of generating
test sets for structural testing based upon use of
complexity metrics or coverage metrics. (see 3.4)

MUTATION ANALYSIS: A method to determine test set
thoroughness by measuring the extent to v^ich a test set can
discriminate the program from slight varients (mutants) of
the program. (see 3.5)

ORACLE: a mechanism to produce the "correct" responses to
compare with the actual responses of the software under
test, (see 2.1)

PATH EXPRESSIONS: a sequence of edges from the program
graph which represents a path through the program. (see
3.4)

PATH TESTING: a test method satisfying coverage criteria
that each logical path through the program be tested.
Often paths through the program are grouped into a finite
set of clases; one path from each class is then tested.
(see 3.4)

PRELIMINARY DESIGN REVIEW: see DOD DEVELOPMENT REVIEWS.

PROGRAM GRAPH: graphical representation of a program. (see
3.4)

PROOF OF CORRECTNESS: The use of techniques of mathematical
logic to infer that a relation between program variables
assumed true at program entry implies that another relation
between program variables holds at program exit. (see 3.1)

REGRESSION TESTING: testing of a previously verified program
required following program modification for extension or
correction. (see 1.2)

-48-

SIMULATION: use of an executable model to represent the
behavior of an object. During testing the computional
hardv?are, the external environment, and even code segments
may be simulated. (see 3.1)

SELF VALIDATING CODE: code which makes an explicit attempt
to determine its own correctness and to proceed
accordingly. (see 3.7)

SPECIAL TEST DATA: test data based on input values that are
likely to require special handling by the program. (see
3 .3)

STATEMENT TESTING: a test method satisfying the coverage
criterion that each statement in a program be executed at
least once during program testing, (see 3.4)

STATIC ANALYSIS: analysis of an program that is performed
without executing the program. (see 3.6)

STRESS TESTING: see BOUNDARY VALUE ANALYSIS.

STRUCTURAL TESTING: a testing method v^ere the test data
are derived solely from the program structure, (see 3.4)

STUB: special code segments that when invoked by a code
segment under test will simulate the behavior of designed
and specified modules not yet constructed, (see 3.9)

SYMBOLIC EXECUTION: a static analysis technique that
derives a symbolic expression for each program path. (see
3.6)

SYSTEM DESIGN REVIEW: see DOD DEVELOPMENT REVIEWS.

SYSTEM REQUIREMENTS REVIEW: see DOD DEVELOPMENT REVIEWS.

TEST DATA SET: set of input elements used in the testing
process. (see 2.1)

TEST DRIVER: a program which directs the execution of
another program against a collection of test data sets.
Usually the test driver also records and organizes the
output generated as the tests are run. (see 3.9)

TEST HARNESS: see TEST DRIVER.

TESTING: examination of the behavior of a program by
executing the program on sample data sets, (see 2.1)

VALID INPUT (TEST DATA FOR A VALID INPUT DOMAIN): test data
that lie within the domain of the function represented by

-49-

the program. (see 2.1)

VALIDATION: determination of the correctness of the final
program or software produced from a development project
with respect to the user needs and requirements. Validation
is usually accomplished by verifying each stage of the
software development lifecycle.

VERIFICATION: in general the demonstration of consistency,
completeness, and correctness of the software at each
stage and between each stage of the development lifecycle.

WALKTHROUGH: a manual analysis technique in which the
module author describes the module's structure and logic
to an audience of colleagues. (see 3.1)

WHITE BOX TESTING: see STRUCTURAL TESTING.

-50-

REFERENCES

[ADRI80] W. R. Adrion and P. M. Mel 1 iar-Smith , "Designing
for the Unexpected," Computer to appear (1980).

[AIiF077] M.W.Alford, "A Requirements Engineering
Methodology for Real-Time Processing Requirements," IEEE
Transactions on Software Engineering , vol SE-2, no 1, pp
60-69 (1977).

[ALLE74] F. E. Allen, " Interprocedural Data Flow
Analysis," Proceedings IFIP congress 1974 , North-Holland
Publishing Co., Amsterdam, pp398-402 (1974).

[ALLE76] F. E. Allen and J. Cocke, "A Program Data
Flow Procedure," Communications of the ACM , vol. 19,
no. 3, pl37-147 (March 1976).

[AMBL78] A. L. Ambler, D.I. Good, J.C.Browne,
W.F. Burger, R.M.Cohen, C.'G.Hoch and R.E.Wells, "Gypsy:
A Language for Specification and Implementation of
Verifiable Programs," Proceedings of an ACM
Conference on Language Design for Rel iabl

e

Software,
D.B .Wortman,ed . , New York, pp 1-10 (1978).

[ANSI 78] ANS FORTRAN X3. 9-1978, American National
Standards Institute, New York (1978).

CBAKE72] F.T.Baker, "Chief Programmer Team Management
of Production Programming," IBM Systems Journal , vol 11,
no 1 , pp 56-73 (1972) .

[BELL77] T.E.Bell, D.C.Bixler and M.E.Dyer, "An
Extendable Approach to Computer-Aided Software
Requirements Engineering," IEEE Transactions on Software
Engineering , vol SE-3, no 1, pp 49-60 (1977) .

CBOEH78] B.W.Boehm, J.R.Brown, H.Kaspar, M.Lipow,
'G.J. MacLeod and M.J.Merrit, Characteristics of Software
Qual ity . North- Holland, Amsterdam-New York-Oxford, 1978.

CBOEH77] B.W.Boehm, "Seven Basic Princ-iples of
Software Engineering," Software Engineering Techniques ,

Infotech State of the Art Report, (1977).

[BOYE75] R.S.Boyer, B . El spas and K.N.Levitt, "SELECT - A
Formal System for Testing and Debugging Programs by Symbolic
Execution," Proceedings of 1 975 International
Conference on Rel iabl

e

Software , pp. 234-245 (1975) .

-51-

[BRAN80] M. A. Branstad, J. C. Cherniavsky, and W. R.
Adrion, "Validation, Verification, and Testing for
the Individual Programmer," Computer ,Vol . 13, No. 12,
(Dec. 1980).

[BROW73] J.R. Brown, et al . , "Automated Software Quality
Assurance," PROGRAM TEST METHODS W. Hetzel , Ed ., Prentice-
Hal 1 , Engl ewood Cliffs, Chapter 15 (1973).

[BUCK79] F. Buckley, "A Standard for Software Quality
Assurance Plans," Computer vol. 12, no. 8, pp43-50 (August
1979) .

[BUDD78a] T.Budd, R.A.DeMillo, R.J.Lipton and E.G. Sayward

,

"The Design of a Prototype Mutation System for Program
Testing," AFIPS Conference Proceedings , vol 47, 1978
Computer Conference, pp 623-627 (1978).

[BUDD78b] T. A. Budd and R. J. Lipton, "Mutation
Analysis of Decision Table Programs," Proceed ings of the
1978 Conference on Informat ion Science and Systems ,

Johns Hopkins University, pp346-349 (1978).

[CAIN75] S. H. Caine and E. K. Gordon, "PDL: A Tool for
Software Design," Proceed ings of the National Computer
Conference , AFIPS Press, Montdale, N. J., (1975) .

[CARP75] L.C .Carpenter and L.L.Tripp, "Software
Design Validation Tool," 1 975 International Conference
on Rel iabl e Software , April 1975.

[CHAP79] N.Chapin, "A Measure of Software
Complexity," Proceedings of the AFIPS National Computer
Conference, pp. 995-1002, June, 1979.

[CHUR56] A. Church, Introduction to Mathematical Logic ,

Vol . 1^, Princeton University Press, Princeton, 1956.

[CONS78] R. L. Constable and M. J. O'Donnell, A
Programming Logic , Winthrop Publishing Co., Cambridge
(1978) .

[DEMI78] R.A.DeMillo, R.J.Lipton and F.'G. Sayward , "Hints on
Test Data Selection: Help for the Practicing Programmer,"
Computer , vol 11, no 4, pp 34-43 (1978).

CDIJK72] E.W.Dijkstra, "Notes on Structured
Programming," in Structured Programming , O.J.Dahl,
E.W.Dijkstra and C.A.R.Hoare, eds.. Academic Press,
London, 1972 (pp 1-82).

[ELSP72] B.Elspas, K.N.Levitt, R. J .Wal dinger and A.Waksman,

-52-

"An Assessment of Techniques for Proving Program
Correctness, Computing Surveys, vol 4, no 2, pp 97-147
(1972) .

[FA'GA76] M.E.Fagan, "Design and Code Inspections to
Reduce Errors in Program Devel opnent ,

" IBM Systems
Journal , vol 15, no 3, pp 182-211 (1976).

[FIPS76] "Guidelines for Documentation of
Computer Programs and Automated Data Systems," FIPS38,
Federal Information Processing Standards Publications,
U.S. Department of Commerce/National Bureau of
Standards, Washington, D.C., February, 1976.

[FOSD76] L. D. Fosdick and L. J. Osterweil , "Data Flow
Analysis in Software Reliability," Computing Surveys
vol. 8, no. 3, pp305-330 (September 1976).

[GENT35] G.Gentzen, "Investigations into Logical
Deductions," in The Col 1 ected Works of Gerhard Gent zen ,

M.E. Szabo ed . , North- Holland, Amsterdam, 1969 Tpp 68-1 28)

.

C GERH78] S. L. Gerhart, "Program Verification in the
1980' s: Problems, Perspectives, and Opportunities,"
ISI /RR-78-71 , Information Sciences Institute, Marina del Rey
(August 1978).

[GERH80] S. L. Gerhart, D. R. Musser, D. H. Thompson,
D. A. Baker, R. L. Bates, R. W. Erickson, R. L. London,
D. G. Taylor, and D. S. Wile, "An Overview of AFFIRM; A
Specification and Verification System, Proceedings IF IP
Congress 1980, North- Holland Publishing Co., Amsterdam,
to appear (1980) .

[GOOD75] J. B. Goodenough and S. L. Gerhart, "Toward a

Theory of Test Data Selection," IEEE Transactions on
Software Engineering , Vol. SE-1 , no. 2, (1975).

[HALS77] M . H. Hal stead , El ements of Software Science,
Elsevier North-Holland, New York, 1977.

[HAMI76] N.Hamilton and S.Zeldin, "Higher Order
Software - A Methodology for Defining Software," IEEE
Transactions on Software Engineering , vol SE-2, no 1, pp
9-32 (1976).

[HANT76] S. L. Hantler and J. C. King, "An
Introduction to Proving the Correctness of Programs,"
Computing Surveys , vol. 8, no. 3, p331-53 (1976).

L HOWD76] W . E. Howden, "Reliability of the Path Analysis
Testing Strategy, " IEEE Transactions on Software

-53-

Engineering , vol SE-2 , no. 3, (1976).

[HOWD77] W.E.Howden, "Symbolic Testing and the
DISSECT Symbolic Evaluation System," IEEE Transactions
on Software Engineering , vol SE-3/ no 4, pp 266-2 78 (1977) .

L HOWD78] W.E.Howden, "A Survey of Dynamic Analysis
Methods," in Tutorial ; Software Testing and
Val idation Techniques , E.Miller and W.E.Howden, ed . , IEEE
Computer Society, New York, 1978.

[HOWD80] W. E. Howden, "Functional Program Testing,"
IEEE Transactions on Software Engineering , vol . SE-6, no. 2,

ppl62-169 (1980).

[INF079] Software Testing , INFOTECH State of the Art
Report Infotech, London (1979).

CIEEE79] IEEE Draft Test Documentation Standard, IEEE
Computer Society Technical Committee on Software
Engineering, Subcommittee on Software Standards, New York
(1979) .

CJACK75] M.A.Jackson, Principles of Program
Design , Academic Press, New York, 1975.

[JONE76] C. Jones, "Program Quality and Programmer
Productivity," IBM Technical Report, International Business
Machines Corp., San Jose, (1976).

[KERN74] B. W. Kernighan, "RATFOR- A Preprocessor for a
Rational FORTRAN," Bell Labs Internal Memorandum, Bell
Laboratories, Murray Hill (1974).

[KOPP76] R. Koppang, "Process Design System- An
Integrated Set of Software Development Tools,"
Proceed ing

s

of the Second International Software
Engineering Conference , October 1976.

[LAMB78] S.S.Lamb, V.'G.Leck, L.J.Peters and
G.L.Smith, "EAMM: A Modeling Tool for
Requirements and Design Specification," Proceedings
COM PSAC 78, IEEE Computer Society, New York, 1978 (pp
48-5 3) .

[LIPT78] R.J.Lipton and F. G.Sayward, "The Status of
Research on Program Mutation," Proceedings of The
Workshop on Software Testing and Test
Documentation , IEEE Computer Society, New York, pp
355-367, 1978.

[LUCK79] D. Luckham, S. "German, F. von Henke , R. Karp, P.

-54-

Milne, D. Oppen, W. Polak, and W. Schenlis, "Stanford
Pascal Verifier User's Manual," AI Memorandum CS-79-731,
Stanford University, Stanford (1979).

[LYON74] G.Lyon and P. B. Stillman, "A FORTRAN Analyzer,"
NBS Technical Note No. 849, National Bureau of Standards,
Washington (1974).

CMAIT80] R. Mai tl and, "NODAL," in "NBS Software Tools
Database," R. Houghton and K. Oakley, editors, NBSIR-xx,
National Bureau of Standards, Washington (1980).

C MANN74] Z. Manna, Mathematical Theory of
Computation , Mc'Graw- Hill, New York, 1974.

1MCCA76] T.J.McCabe, "A Complexity Measure," IEEE
Transactions on Software Engineering , vol SE-2, no 4, pp.
308-320 (1976).

CMCCA77] J. McCall, P. Richards, and 'G. Walters,
"Factors in Software Quality," volumes 1-3, NTIS AD-
A049-014, 015, 055 (1977).

[METZ77] J. R. Metzner and B. H. Barnes Decision Table
Languages and Systems Academic Press, New York (1977).

[MILL70] H.D.Mills, "Top Down Programming in Large
Systems," in Debugging Techniques in Large Systems ,

R. Rustin ed . , Prentice- Hall, 1970 (pp 41-55) .

[MILL72] H. D. Mills, "On statistical validation of
computer programs," IBM Report FSC72-6015, Federal Systems
Division, IBM, Gaither sburg , Md . , 1972.

[MILL75] E.F .Mil ler , Jr . , "RXVP -An Automated Verification
System for FORTRAN, " Proceedings Workshop 4 , Computer
Science and Statistics ; Eighth Annual Symposium on
the Interface, Los Angeles, California, February 1975.

[MILL77] E.F.Miller ,Jr . , "Program Testing: Art Meets
Theory," Computer , vol 10, no 7, pp 42-51 (1977).

[MILS76] "Technical Reviews and Audits for
Systems, Equipment, and Computer Programs," MIL-
STD-1521A (USAF) , U. S . Department of the Air Force,
Washington, D.C. (1976).

[MYER76] G.J.Myers, Software Reliabil ity
Principl es and Practices, John Wiley and Sons, New York
(1976) .

[MYER79] G. J. Myers, The Art of Software Testing, John

-55-

Wiley and Eons, New York (1979).

CNEUM75] P. G. Neumann, L. Robinson, K. Levitt, R. S.
Boyer, A. R. Saxema, "A Provably Secure Operating
System," SRI Project 2581, SRI International, Menlo Park
(1975).

[OSTE76] L. J. Osterweil and L. D. Fosdick, "DAVE- A
Validation, Error Detection, and Documentation System for
FORTRAN programs," Software Practice and Experience , vol . 6,
pp473-486 (1976).

COSTE80] L. J. Osterweil, " A Strategy for Effective
Integration of Verification and Testing Techniques,"
Technical Report CU- CS-181-80, University of Colorado,
Boulder (1980) .

[PANZ78] D.J. Panzl , "Automatic Revision of
Formal Test Procedures," Third International Conference
on Software Engineering , May 1978.

[PARN77] D.L. Parnas , "The Use of Precise Specifications in
the Development of Software," Information Processing 77 , B.
Gilchrist, editor. North Holland"] (1 977) .

[RAMA74] C . V.Ramamoorthy and S.F.Ho, Fortran
Automated Code Evaluation System, ERL - M466,
University of California, Berkeley, California, 1974.

[ROBI79] L. Robinson, "The HDM Handbook, Volume I-III,"
SRI Project 4828, SRI International, Menlo Park (1979).

Cross 77] D.T.Ross and K.E.Schoman, Jr ., "Structured
Analysis for Requirements Definition," IEEE Transactions
on Software Engineering , vol SE-3, no 1, pp 6-15
Tr97Ty:^

[ROUB76] O.Roubine and L.Robinson, Special
Reference Manual , Stanford Research Institute
Technical Report CSG-45, Menlo Park, Calif., 1976.

[TAUS77] Robert C. Tausworthe, Standardized Development
of Computer Software , Prentice-Hall, Engl ewood Cliffs, N.

J., 1977.

[SNEE78] H. Sneed and K. Kirchoff, "Prufstand- A Testbed
for Systematic Software Components," in Proceedings INFOTECH
State of the Art Conference on Software Testing , Infotech

,

London~Tl978) .

[SRS79] Proceedings of the Specifications of Reliable
Software Conference IEEE Catalog No. CH1401-9C, IEEE, New

-56-

York (1979).

[STUC77] L. G. Stucki , "New Directions in Automated Tools
for Improving Software Quality," in Current Trends in
Programming Methodology , Vol ume I

I

-Program Val idation ,

R. Yeh, editor, Prentice-Hall, Englewood Cliffs, pp80-ll
(1977)

[TAUS77] R. C. Tausworthe, Standardized Development of
Computer Software , Jet Propulsion Laboratory, Pasadena,
(1978) .

CTEIC77] D.Teichroew and F.A . Hershey, III , "PSL/PSA:
A Computer- Aided Technique for Structured
Documentation and Analysis of Information Processing
Systems," IEEE Transactions on Software Engineering ,

vol SE-3, no 1, pp 41-48 (1977).

[TEIC78] D. Teichroew personal communication.

[WEIN71] G.M.Weinberg, The Psychology of Computer
Programming , Van Nostrand Reinhold, New York, 1971.

[WHIT78] 1. J. White and E. I. Cohen, " A Domain Strategy
for Computer Program Testing," Digest for the Workshop on
Software Testing and Test Documentation , Ft. LauderSal e

,

pp335-354 (1978).

[YOUR79] E.Yourdon and L. L. Constantine

,

Structured Design , Prentice-Hall, Englewood Cliffs, N.J.,
1979.

-57-

There's
anew
look

/ / I X * • monthly

y /y/ magazine of the Nation-

^^^^^if^/ ^' Bureau of Standards.

^^^^^^ X Still featured are special ar-

^^^^^k^^^/ tides of general interest on

J / current topics such as consum-
product safety and building^^^^ / technology. In addition, new sec-

tions are designed to . . . PROVIDE
SCIENTISTS with illustrated discussions

of recent technical developments and
work in progress . . . INFORM INDUSTRIAL

MANAGERS of technology transfer activities in

Federal and private labs. . . DESCRIBE TO MAN-
UFACTURERS advances in the field of voluntary and

mandatory standards. The new DIMENSIONS/NBS also

carries complete listings of upcoming conferences to be
held at NBS and reports on all the latest NBS publications,

with information on how to order. Finally, each issue carries

a page of News Briefs, aimed at keeping scientist and consum-
alike up to date on major developments at the Nation's physi-

cal sciences and measurement laboratory.

(please detach here)

SUBSCRIPTION ORDER FORM

Enter my Subscription To DIMENSIONS/NBS at S11.00. Add S2.75 for foreign mailing. No additional

postage is required for mailing within the United States or its possessions. Domestic remittances

should be made either by postal money order, express money order, or check. Foreign remittances

should be made either by international money order, draft on an American bank, or by UNESCO
coupons.

Send Subscription to:

I

NAME-FIRST, LAST I

I I

Remittance Enclosed

(Make checks payable

to Superintendent of

Documents)

Q Charge to my Deposit
Account No.

11
COMPANY NAME OR ADDITIONAL ADDRESS LINE

STREET ADDRESS

I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I

MAIL ORDER FORM TO:
Superintendent of Documents
Government Printing Office

Washington, D.C. 20402

PLEASE PRINT

•ClU.S. GOVERNMENT PRINTING OFFICE: 1 9 8 1 -340- 997/356

NBS'lUA (REV. 2-BO)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBS SP 500-75

2. Performing Organ. Report No 3. Publication Date

February 1981

4. TITLE AND SUBTITLE

Validation, Verification, and Testing of Computer Software

5. AUTHOR(S)

W. Richards Adrion, Martha A. Branstad, John C. Cherniavsky

6. PERFORMING ORGANIZATION (If joint or other than NBS. see /nstroctions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State. ZIP)

Same as above.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 80-600199

[2J Document describes a computer program; SF-I8S, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual sunnmary of most significant infomiation. If document includes a significant

bibliography or literature survey, mention it here^

Programming is an exercise in problem solving. As with any problem

solving activity, determination of the validity of the solution is part

of the process. This survey discusses testing and analysis techniques

that can be used to validate software and to instill confidence in the

programming product. Verification throughout the development process is

stressed. Specific tools and techniques are described.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Automated software tools; software lifecycle; software testing; software
verification; test coverage; test data generation; validation; verification

13. AVAILABILITY

Unlimited

Q For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C
20402.

[^31 Of^'s'' From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

62

15. Price

$3.75

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription; domestic

$13; foreign SI 6.25. Single copy, $3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical

Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and

technology, with primary emphasis on work at NBS. The magazine
highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement
standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and
automatic data processing. Annual subscription: domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on
various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and
bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and
studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-
piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,
systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-
selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private ^ctor standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from
the National Technical Information Services, Springfield, VA 22161

.

Federal Information Processing Standards Publications (FIPS

PUB)— Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex-

ecutive Order 1 1717 (38 FR 12315, dated May 1 1, 1973) and Pan 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, $300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21 5

SPECIAL FOURTH-CLASS RATE
BOOK

		Superintendent of Documents
	2016-03-22T16:57:30-0400
	US GPO, Washington, DC 20401
	Superintendent of Documents
	GPO attests that this document has not been altered since it was disseminated by GPO

